
Algorithms and Data Structures

Matrix Decomposition
Cholesky Decomposition

Learning goals
Cholesky decomposition

Properties of Cholesky
decomposition

CHOLESKY DECOMPOSITION

Aim: Solve LES of the form Ax = b

with A ∈ Rn×n, A positive-definite

1 Write A as A = LL⊤

2 Solve Ly = b by forward substitution
3 Solve L⊤x = y by back substitution

© Algorithms and Data Structures – 1 / 13

CHOLESKY DECOMPOSITION / 2

Example: Let Ax = b be a LES
4 2 2 2
2 5 3 3
2 3 11 5
2 3 5 19

x1

x2

x3

x4

 =

22
33
61
99

© Algorithms and Data Structures – 2 / 13

CHOLESKY DECOMPOSITION
1 Write A as A = LL⊤

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

 =

4 2 2 2
2 5 3 3
2 3 11 5
2 3 5 19

l211 = a11 → l11 =

√
a11 =

√
4 = 2

© Algorithms and Data Structures – 3 / 13

CHOLESKY DECOMPOSITION
1 Write A as A = LL⊤

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

 =

4 2 2 2
2 5 3 3
2 3 11 5
2 3 5 19

l211 = a11 → l11 =

√
a11 =

√
4 = 2

l21 · l11 = a21 → l21 =
a21

l11
=

2

2
= 2

© Algorithms and Data Structures – 3 / 13

CHOLESKY DECOMPOSITION
1 Write A as A = LL⊤

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

 =

4 2 2 2
2 5 3 3
2 3 11 5
2 3 5 19

l211 = a11 → l11 =

√
a11 =

√
4 = 2

l21 · l11 = a21 → l21 =
a21

l11
=

2

2
= 2

l222 + l221 = a22 → l22 =
√

a22 − l221 =
√

5 − 12 = 2

© Algorithms and Data Structures – 3 / 13

CHOLESKY DECOMPOSITION
1 Write A as A = LL⊤

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

l11 l21 l31 l41
0 l22 l32 l42
0 0 l33 l43
0 0 0 l44

 =

4 2 2 2
2 5 3 3
2 3 11 5
2 3 5 19

l211 = a11 → l11 =

√
a11 =

√
4 = 2

l21 · l11 = a21 → l21 =
a21

l11
=

2

2
= 2

l222 + l221 = a22 → l22 =
√

a22 − l221 =
√

5 − 12 = 2

l31 · l11 = a31 → l31 =
a31

l11
=

2

2
= 1

...

General formula: ljj =
(

ajj −
∑j−1

k=1 l2jk

) 1
2 lij = 1

ljj

(
aij −

∑j−1
k=1 lik ljk

)

© Algorithms and Data Structures – 3 / 13

CHOLESKY DECOMPOSITION

2 Solve Ly = b by forward substitution

2 0 0 0
1 2 0 0
1 1 3 0
1 1 1 4

y1

y2

y3

y4

 =

22
33
61
99

2y1

y1 + 2y2

y1 + y2 + 3y3

y1 + y2 + y3 + 4y4

 =

22
33
61
99

⇒ y1 = 11, y2 = 11, y3 = 13, y4 = 16

© Algorithms and Data Structures – 4 / 13

CHOLESKY DECOMPOSITION / 2

3 Solve L⊤x = y by back substitution
2 1 1 1
0 2 1 1
0 0 3 1
0 0 0 4

x1

x2

x3

x4

 =

11
11
13
16

⇒ x4 = 4, x3 = 3, x2 = 2, x1 = 1

© Algorithms and Data Structures – 5 / 13

CHOLESKY DECOMPOSITION / 3

Calculation of the lower triangular matrix (L):
l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

l11 l21 l31 l41

0 l22 l32 l42

0 0 l33 l43

0 0 0 l44

 =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Thus the entries of L (j rows, i columns) result from

lij =

0 for i < j

(ajj −
∑j−1

k=1 l2jk)
1
2 for i = j

1
ljj
(aij −

∑j−1
k=1 lik ljk) for i > j

Important: Order of calculation (row by row) matters!

→ l11, l21, l22, l31, l32, l33,..., lnn

© Algorithms and Data Structures – 6 / 13

CHOLESKY DECOMPOSITION / 4

Algorithm Cholesky decomposition

1: for j = 1 to n do

2: ljj =
(

ajj −
∑j−1

k=1 l2jk
) 1

2

3: for i = j + 1 to n do
4: lij = 1

ljj

(
aij −

∑j−1
k=1 lik ljk

)
5: end for
6: end for

If we consider only the (dominant) multiplications, we count in each step
of the outer loop

For diagonal elements: (j − 1) multiplications

For non-diagonal elements: (n − j)(j − 1) multiplications

© Algorithms and Data Structures – 7 / 13

CHOLESKY DECOMPOSITION / 5

In total, we estimate the computational effort with

n∑
j=1

[(j − 1) + (n − j)(j − 1)]

=
n∑

j=1

[j − 1 + nj − n − j2 + j] =
n∑

j=1

[(n + 2)j − 1 − j2]

= n
(n + 2)(n + 1)

2
− n − n

(n + 1)(2n + 1)
6

= n · 3(n + 2)(n + 1)− 6 − (n + 1)(2n + 1)
6

= n · 3n2 + 9n + 6 − 6 − 2n2 − 2n − n − 1
6

≈ 1
6

n3 +O(n2) for large n

© Algorithms and Data Structures – 8 / 13

PROPERTIES OF CHOLESKY DECOMPOSITION

Most important procedure for positive-definite matrices

Algorithm is always stable (no pivoting necessary)

Existence and uniqueness: The Cholesky decomposition exists
and is unique for a positive-definite matrix A

Runtime behavior:

Decomposition of the matrix: n3

6 +O(n2) multiplications
Forward and back substitution: n2

© Algorithms and Data Structures – 9 / 13

PROPERTIES OF CHOLESKY DECOMPOSITION / 2

cholesky = function(a) {

n = nrow(a)

l = matrix(0, nrow = n, ncol = n)

for (j in 1:n) {

l[j, j] = (a[j, j] - sum(l[j, 1:(j - 1)]^2))^0.5

if (j < n) {

for (i in (j + 1):n) {

l[i, j] = (a[i, j] -

sum(l[i, 1:(j - 1)] * l[j, 1:(j - 1)])) / l[j, j]

}

}

}

return(l)

}

© Algorithms and Data Structures – 10 / 13

PROPERTIES OF CHOLESKY DECOMPOSITION / 3

A = crossprod(matrix(runif(16), 4, 4))

cholesky(A)

t(chol(A))

A = crossprod(matrix(runif(1e+06), 1e+03, 1e+03))

system.time(cholesky(A))

system.time(chol(A))

© Algorithms and Data Structures – 11 / 13

APPLICATION EX.: MULTIVARIATE GAUSSIAN

Target: Efficient evaluation of the density of a normal distribution.

The density of the d-dimensional multivariate normal distribution is

f (x) =
1

(2π)
d
2 |Σ|

1
2

exp{−1
2
(x − µ)⊤Σ−1(x − µ)}

with x ∈ Rd , Cov(x) = Σ,Σ positive-definite.

With z = x − µ, z ∈ Rd we obtain:

(x − µ)⊤Σ−1(x − µ) = z⊤Σ−1z

Problem: Calculation of Σ−1 is numerically unstable and requires a
long time.

© Algorithms and Data Structures – 12 / 13

APPLICATION EX.: MULTIVARIATE GAUSSIAN / 2

Solution: Use Cholesky decomposition to avoid inverting Σ−1. Write
Σ as Σ = LL⊤, rank(L) = d .

Thus it holds:

z⊤Σ−1z = z⊤(LL⊤)−1z

= z⊤(L⊤)−1L−1z

= (L−1z)⊤L−1z

= v⊤v

with v = L−1z, v ∈ Rd .

To avoid inverting L we can calculate v as a solution of the LES

Lv = z

Then we can calculate vT v as a scalar product of two d-dimensional
vectors.

© Algorithms and Data Structures – 13 / 13

