
Algorithms and Data Structures

Matrix Decomposition
Introduction to Matrix Decomposition and
Recap on Matrices

Learning goals
Systems of linear equations

Basic knowledge of matrices

SYSTEMS OF LINEAR EQUATIONS

Motivation: Large datasets can be challenging when it comes to data
processing. Solving a LES of 10 equations in 10 unknowns might be
easy, but an increasing size of the system usually comes along with
algorithmic complexity and efficiency which may become critical.

Definition: We consider a system of linear equations

Ax = b

with A ∈ Rn×n regular (invertible), x ∈ Rn and b ∈ Rn.

In Chapter 3 - Numerics we have considered the condition of linear
systems and have shown that

κ(A) = ∥A∥∥A−1∥

We have seen that a solution of the LES by using x = A−1b is to be
avoided from a numerical perspective.

© Algorithms and Data Structures – 1 / 13

SYSTEMS OF LINEAR EQUATIONS / 2

Reminder: Why should we not calculate A−1b (x = solve(A) %*%

b)?

Effort: Calculation of inverse needs n3 flops. In addition there are
about 2n2 flops for matrix-vector multiplication.

Memory: The n2 entries of the inverted matrix must be stored.

Stability: Two (possibly ill-posed) subproblems are solved:
1 Calculation of A−1 by solving Ax = 0

→ Condition κ1 = ∥A∥∥A−1∥
2 Calculation of matrix-vector product A−1b

→ Condition κ2 = ∥A∥∥A−1∥
The error is amplified by the factor κ = κ1 · κ2 = (∥A∥∥A−1∥)2.

© Algorithms and Data Structures – 2 / 13

SYSTEMS OF LINEAR EQUATIONS / 3

Example: Hilbertmatrix (see Chapter 3 - Numerics)
We solve the LES once by matrix inversion and once directly using
solve(H, b).

n = 10

H = hilbert(n)

x = rnorm(n)

b = H %*% x

© Algorithms and Data Structures – 3 / 13

SYSTEMS OF LINEAR EQUATIONS / 4

microbenchmark(

xhat_inverting = solve(H) %*% b, # matrix inversion

xhat_solving = solve(H, b)) # direct solution

Unit: microseconds

expr min lq mean median uq max neval

xhat_inverting 25.7 28.55 31.554 31.3 33.00 59.0 100

xhat_solving 14.8 16.10 18.890 17.9 19.55 81.2 100

cld

b

a

norm(xhat_inverting - x) # matrix inversion

[1] 0.005478653464037843

norm(xhat_solving - x) # direct solution

[1] 0.0003750897921233343

© Algorithms and Data Structures – 4 / 13

SYSTEMS OF LINEAR EQUATIONS / 5

Better: Solve LES directly with x = solve(A, b)

In this chapter: How can a LES be solved in a stable and efficient
way? How does solve(A, b) work?

Idea: Decompose the matrix A into a product of matrices in such a way
that the linear system is "easily" solvable.

Important procedures:

LU decomposition

Cholesky decomposition

QR decomposition

© Algorithms and Data Structures – 5 / 13

REMINDER: ELEMENTARY MATRICES

Elementary row and column transformations of a matrix A:

type I: Row switching (Column switching)

type II: Multiplication of row (column) i by a real number λ ̸= 0

type III: Addition of multiples of row (column) j to row (column) i

These transformations are applied when multiplying A by elementary
matrices from the left (row transformations) or from the right (column
transformations).

© Algorithms and Data Structures – 6 / 13

REMINDER: ELEMENTARY MATRICES / 2

Be A a (4 × 4) - matrix: A =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Example elementary matrix type I:
Switch row 2 and row 4 in A:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

A =

1 2 3 4

13 14 15 16
9 10 11 12
5 6 7 8

The elementary matrix is created by switching the 2nd and 4th row
(column) of the identity matrix.

© Algorithms and Data Structures – 7 / 13

REMINDER: ELEMENTARY MATRICES / 3

Example elementary matrix type II:
Multiply column 3 of A with λ.

A

1 0 0 0
0 1 0 0
0 0 λ 0
0 0 0 1

 =

1 2 λ3 4
5 6 λ7 8
9 10 λ11 12
13 14 λ15 16

Example elementary matrix type III:
Multiply row 1 with λ and add it to row 3.

1 0 0 0
0 1 0 0
λ 0 1 0
0 0 0 1

A =

1 2 3 4
5 6 7 8

λ1 + 9 λ2 + 10 λ3 + 11 λ4 + 12
13 14 15 16

© Algorithms and Data Structures – 8 / 13

REMINDER: ELEMENTARY MATRICES / 4

The elementary matrix of type III results from E = I + λeie⊤
j (i ̸= j).

For the example above:

E = I4 + λe3e⊤
1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ λ

0
0
1
0

(
1 0 0 0

)

E−1 results from E−1 = I − λeie⊤
j . Easy to check:

EE−1 = (I+λeie⊤
j)(I−λeie⊤

j) = I2−λ2eie⊤
j eie⊤

j = I−0·λ2eie⊤
j = I,

since e⊤
j ei = 0 for i ̸= j .

© Algorithms and Data Structures – 9 / 13

REPETITION: PERMUTATION MATRIX

Permutation matrices contain exactly one 1 in each row and column, all
other entries are 0.

Example:

P =
(
e5 e2 e4 e1 e3

)
=

0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0

Multiplying by a permutation matrix corresponds to one or more
elementary transformations of type I.
Thus, an elementary matrix of type I is also a permutation matrix.

© Algorithms and Data Structures – 10 / 13

REMINDER: POSITIVE (SEMI-)DEFINITE

A symmetric matrix A ∈ Rn×n is positive semi-definite iff

x⊤Ax ≥ 0 for all x ∈ Rn, x ̸= 0.

Or equivalently: A matrix is positive semi-definite if all eigenvalues are
non-negative.

A matrix is positive-definite, if the above equation can be rewritten
with a "strict" greater than

x⊤Ax > 0 for all x ∈ Rn, x ̸= 0.

or equivalently if all eigenvalues are positive.

© Algorithms and Data Structures – 11 / 13

REMINDER: ORTHOGONAL MATRICES

A matrix Q ∈ Rn×n is orthogonal iff

QQ⊤ = I.

The column vectors (or row vectors) of an orthogonal matrix are
orthogonal to each other and normalized (to length 1). They form an
orthonormal basis of Rn.

The inverse of an orthogonal matrix is equal to its transpose, i.e.

Q−1 = Q⊤

Permutation matrices are orthogonal.

© Algorithms and Data Structures – 12 / 13

REMINDER: RANK OF A MATRIX

Definition: Rank of a matrix
A matrix A ∈ Rm×n has rank k if one of the following equivalent
conditions is met:

Maximum number of independent columns = k
(k -dimensional column space)

Maximum number of independent rows = k
(k -dimensional row space)

A can be factorized into matrices of rank k : W ∈ Rm×k and
H ∈ Rk×n

A = W · H

© Algorithms and Data Structures – 13 / 13

