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INVERSE TRANSFORM SAMPLING

Let X be a continuous RV with distribution function FX (x). Then

FX (X) ∼ U(0, 1)

Therefore, if U ∼ U(0, 1) then the RV F−1
X (U) has the same distribution

as X with distribution function FX (x).

Proof: Define
F−1

X (u) := inf{x : FX (x) ≥ u}, 0 < u < 1

If U ∼ U(0, 1), then for all x ∈ R it holds

P(F−1
X (U) ≤ x) = P(inf{t : FX (t) = U} ≤ x)

= P(U ≤ FX (x))

= FU(FX (x)) = FX (x).

Thus, F−1
X (U) has the same distribution as X .
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INVERSE TRANSFORM SAMPLING / 2

Algorithm
1 Calculate inverse function F−1

X (u).
2 For each random number:

Generate random u from U(0, 1).
Calculate x = F−1

X (u).

This theoretically solves the problem of simulating continuous random
numbers. However, if F−1 is difficult to compute, other methods are
often preferred.
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EX. INVERSION: UNIFORM DISTRIBUTION

Be U ∼ U(0, 1)

Aim: X ∼ U(a, b)

F(x) =


0 x < a
x−a
b−a x ∈ [a, b]

1 x > b
x − a
b − a

!
= u

⇔ x − a = u(b − a)

⇔ x = u(b − a) + a
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EX. INVERSION: EXPONENTIAL DISTRIBUTION

Be U ∼ U(0, 1)

Aim: X ∼ Exp(λ)

F(x) = 1 − e−xλ !
= u

⇔ −xλ = log(1 − u)

⇔ x =
− log(1 − u)

λ

Since
U ∼ U(0, 1) ⇒ 1 − U ∼ U(0, 1)

RV can be generated from F−1∗
X (u) = − log(u)

λ .
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INVERSION FOR DISCRETE RANDOM VARIABLES

X is a discrete random variable and

. . . < xi−1 < xi < xi+1 < . . .

are steps in FX (x). Then the inversion is F−1
X (u) = xi , with

FX (xi−1) < u ≤ FX (xi).

Algorithm
1 Draw random u from U(0, 1).
2 Output xi with FX (xi−1) < u ≤ FX (xi).

Solving F(xi−1) < u ≤ F(xi) in (2.) can be difficult.
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EX. INVERSION: GEOMETRIC DISTRIBUTION

Aim: Generate random numbers from Geom(p = 1
4).

At points of discontinuity (x = 0, 1, 2, ...) the density function is
fX (x) = pqx , with q = 1 − p and distribution function is
FX (x) = 1 − qx+1.

Solve 1 − qx < u ≤ 1 − qx+1, with u from U(0, 1).

Equation system corresponds to x < log(1 − u)/log(q) ≤ x + 1.

Solution: x + 1 = ⌈log(1 − u)/log(q)⌉.
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LIMITATIONS OF INVERSION SAMPLING

The quality of the random numbers is heavily dependent on the
quality of the quantile function.

While F is often easy to calculate, the computation of F−1 can be
difficult:
⇒ Solve numerically F(X)− U = 0.

Especially for quantile functions, which approximate the
distribution function numerically in the corresponding integral, the
inversion method is inefficient and inaccurate.

But: in R for example, normally distributed random numbers are
currently calculated using inverse transform sampling.
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TRANSFORMATIONS

For the simulation of specifically distributed random variables
transformations of other random variables can be used, e.g.:

1 If Z ∼ N(0, 1), then V = Z 2 ∼ χ2(1).
2 If U ∼ χ2(m) and V ∼ χ2(n) are independent, then

F = U/m
V/n ∼ F(m, n).

3 If Z ∼ N(0, 1) and V ∼ χ2(n) are independent, then
T = Z√

V/n
is ∼ t(n).

4 If U ∼ Gamma(r , λ) and V ∼ Gamma(s, λ) are independent,
then X = U

U+V ∼ Beta(r , s).
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MIXTURE DISTRIBUTIONS

Random variable X follows (discrete) mixture distribution, if X ∼ FX

FX (x) =
K∑

i=1

θiFXi (x)

for a set of K random variables X1,X2, ...,XK , with θi > 0 and∑
θi = 1.

Simulation of mixture distributions:
1 Draw integer k ∈ {1, ...,K}, with P(k) = θk .
2 Draw random number x from FXk .
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MIXTURE DISTRIBUTIONS / 2

Example: Mixture distribution

Draw from a 50%-50% - mixture of N(0, 1) and N(3, 0.5)
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SAMPLING MULTIVARIATE GAUSSIAN

X = (X1, ...,Xd) ∼ Nd(µ,Σ):

f (x) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(x − µ)TΣ−1(x − µ))

with mean µ = (µ1, ..., µd)
T and symmetrical, positive definite

covariance matrix Σ.

Sampling from multivariate Gaussian:

1 Generate Z = (Z1, ...,Zd), with Zi
iid∼ N(0, 1).

2 Transform random vector Z to desired mean and covariance.
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SAMPLING MULTIVARIATE GAUSSIAN / 2

Derivation of Transformation:

If Z ∼ Nd(µ,Σ), then CZ + b is ∼ Nd(Cµ+ b,CΣCT ).

If Z ∼ Nd(0, Id), then CZ + b is ∼ Nd(b,CCT ).

Assuming Σ can be factorized into Σ = CCT for a matrix C, then
CZ + µ ∼ Nd(µ,Σ).

Hence, CZ + µ is the transformation we are looking for.
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SAMPLING MULTIVARIATE GAUSSIAN / 3

Calculation of the square root Σ1/2 = C by spectral
decomposition.

Σ = PΛP−1, with Λ being a diagonal matrix of the eigenvalues of
Σ and P being a matrix with the orthogonal eigenvectors in the
columns space (P−1 = PT ).

Σ1/2 then corresponds to Σ1/2 = PΛ1/2P−1, with
Λ1/2 = diag(λ1/2

1 , ..., λ
1/2
d ).

There are other possibilities to factorize Σ (e.g. Cholesky
decomposition) → see chapter 7.
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SAMPLING MULTIVARIATE GAUSSIAN / 4
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