Algorithms and Data Structures

Random Numbers Methods for other Distributions

× 0 0 × × ×

Learning goals

- Inverse transform sampling
- Transformations
- Mixture distribution
- Sampling multivariate Gaussian

INVERSE TRANSFORM SAMPLING

Let X be a continuous RV with distribution function $F_X(x)$. Then

 $F_X(X) \sim U(0,1)$

Therefore, if $U \sim U(0, 1)$ then the RV $F_X^{-1}(U)$ has the same distribution as *X* with distribution function $F_X(x)$.

Proof: Define

$$F_X^{-1}(u) := inf\{x : F_X(x) \ge u\}, \ 0 < u < 1$$

If $U \sim U(0, 1)$, then for all $x \in \mathbb{R}$ it holds

$$P(F_X^{-1}(U) \le x) = P(\inf\{t : F_X(t) = U\} \le x)$$

= $P(U \le F_X(x))$
= $F_U(F_X(x)) = F_X(x).$

Thus, $F_X^{-1}(U)$ has the same distribution as X.

0 0 X X 0 X X

INVERSE TRANSFORM SAMPLING / 2

Algorithm

- Calculate inverse function $F_X^{-1}(u)$.
- Por each random number:
 - Generate random u from U(0, 1).
 - Calculate $x = F_X^{-1}(u)$.

This theoretically solves the problem of simulating continuous random numbers. However, if F^{-1} is difficult to compute, other methods are often preferred.

× × ×

EX. INVERSION: UNIFORM DISTRIBUTION

Be $U \sim U(0, 1)$ Aim: $X \sim U(a, b)$ $F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$ $\frac{x-a}{b-a} \stackrel{!}{=} u$ $\Leftrightarrow x - a = u(b - a)$ $\Leftrightarrow x = u(b-a) + a$

× × 0 × × ×

EX. INVERSION: EXPONENTIAL DISTRIBUTION

× × ×

Be
$$U \sim U(0, 1)$$

Aim: $X \sim \text{Exp}(\lambda)$
 $F(x) = 1 - e^{-x\lambda} \stackrel{!}{=} u$
 $\Leftrightarrow -x\lambda = \log(1 - u)$
 $\Leftrightarrow x = \frac{-\log(1 - u)}{\lambda}$

Since

$$U \sim {\sf U}(0,1) ~~\Rightarrow~~ 1-U \sim {\sf U}(0,1)$$
 RV can be generated from $F_X^{-1*}(u) = rac{-\log(u)}{\lambda}.$

INVERSION FOR DISCRETE RANDOM VARIABLES

X is a discrete random variable and

$$\ldots < x_{i-1} < x_i < x_{i+1} < \ldots$$

are steps in $F_X(x)$. Then the inversion is $F_X^{-1}(u) = x_i$, with $F_X(x_{i-1}) < u \le F_X(x_i)$.

Algorithm

- Draw random u from U(0, 1).
- 2 Output x_i with $F_X(x_{i-1}) < u \le F_X(x_i)$.

Solving $F(x_{i-1}) < u \le F(x_i)$ in (2.) can be difficult.

EX. INVERSION: GEOMETRIC DISTRIBUTION

Aim: Generate random numbers from $Geom(p = \frac{1}{4})$.

At points of discontinuity (x = 0, 1, 2, ...) the density function is $f_X(x) = pq^x$, with q = 1 - p and distribution function is $F_X(x) = 1 - q^{x+1}$.

Solve $1 - q^x < u \le 1 - q^{x+1}$, with *u* from U(0, 1).

Equation system corresponds to $x < log(1 - u)/log(q) \le x + 1$.

Solution: $x + 1 = \lfloor log(1 - u) / log(q) \rfloor$.

× 0 0 × 0 × ×

LIMITATIONS OF INVERSION SAMPLING

- The quality of the random numbers is heavily dependent on the quality of the quantile function.
- While *F* is often easy to calculate, the computation of *F*⁻¹ can be difficult:
 - \Rightarrow Solve numerically F(X) U = 0.
- Especially for quantile functions, which approximate the distribution function numerically in the corresponding integral, the inversion method is inefficient and inaccurate.
- But: in R for example, normally distributed random numbers are currently calculated using inverse transform sampling.

× 0 0 × × ×

TRANSFORMATIONS

For the simulation of specifically distributed random variables transformations of other random variables can be used, e.g.:

• If
$$Z \sim N(0, 1)$$
, then $V = Z^2 \sim \chi^2(1)$.

- If $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ are independent, then $F = \frac{U/m}{V/n} \sim F(m, n)$.
- If $Z \sim N(0, 1)$ and $V \sim \chi^2(n)$ are independent, then $T = \frac{Z}{\sqrt{V/n}} is \sim t(n).$
- If $U \sim Gamma(r, \lambda)$ and $V \sim Gamma(s, \lambda)$ are independent, then $X = \frac{U}{U+V} \sim Beta(r, s)$.

× < 0 × × ×

MIXTURE DISTRIBUTIONS

Random variable X follows (discrete) mixture distribution, if $X \sim F_X$

$$F_X(x) = \sum_{i=1}^{K} \theta_i F_{X_i}(x)$$

for a set of *K* random variables $X_1, X_2, ..., X_K$, with $\theta_i > 0$ and $\sum \theta_i = 1$.

Simulation of mixture distributions:

• Draw integer
$$k \in \{1, ..., K\}$$
, with $P(k) = \theta_k$.

2 Draw random number x from F_{X_k} .

× 0 0 × × ×

MIXTURE DISTRIBUTIONS / 2

Example: Mixture distribution

Draw from a 50%-50% - mixture of N(0, 1) and N(3, 0.5)

SAMPLING MULTIVARIATE GAUSSIAN

$$X = (X_1, ..., X_d) \sim N_d(\mu, \Sigma)$$
:
 $f(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu))$

with mean $\boldsymbol{\mu} = (\mu_1, ..., \mu_d)^T$ and symmetrical, positive definite covariance matrix $\boldsymbol{\Sigma}$.

Sampling from multivariate Gaussian:

• Generate
$$Z = (Z_1, ..., Z_d)$$
, with $Z_i \stackrel{iid}{\sim} N(0, 1)$.

2 Transform random vector Z to desired mean and covariance.

× 0 0 × 0 × ×

SAMPLING MULTIVARIATE GAUSSIAN / 2

Derivation of Transformation:

- If $Z \sim N_d(\mu, \Sigma)$, then $CZ + \boldsymbol{b}$ is $\sim N_d(C\mu + \boldsymbol{b}, C\Sigma C^T)$.
- If $Z \sim N_d(0, I_d)$, then $CZ + \boldsymbol{b}$ is $\sim N_d(\boldsymbol{b}, CC^T)$.
- Assuming Σ can be factorized into $\Sigma = CC^T$ for a matrix *C*, then $CZ + \mu \sim N_d(\mu, \Sigma)$.
- Hence, $\textit{CZ} + \mu$ is the transformation we are looking for.

SAMPLING MULTIVARIATE GAUSSIAN / 3

- Calculation of the square root Σ^{1/2} = C by spectral decomposition.
- $\Sigma = P \Lambda P^{-1}$, with Λ being a diagonal matrix of the eigenvalues of Σ and P being a matrix with the orthogonal eigenvectors in the columns space ($P^{-1} = P^T$).
- $\Sigma^{1/2}$ then corresponds to $\Sigma^{1/2} = P\Lambda^{1/2}P^{-1}$, with $\Lambda^{1/2} = diag(\lambda_1^{1/2}, ..., \lambda_d^{1/2})$.
- There are other possibilities to factorize Σ (e.g. Cholesky decomposition) \rightarrow see chapter 7.

SAMPLING MULTIVARIATE GAUSSIAN / 4

× 0 0 × 0 × ×