Algorithms and Data Structures

Random Numbers
Methods for other Distributions

Learning goals

@ Inverse transform sampling
; @ Transformations
~ @ Mixture distribution

@ Sampling multivariate Gaussian

X X



INVERSE TRANSFORM SAMPLING

Let X be a continuous RV with distribution function Fx(x). Then
Fx(X) ~U(0,1)

Therefore, if U ~ U(0, 1) then the RV F, ' (U) has the same distribution
as X with distribution function Fx(x).

Proof: Define
Fi'(u) :=inf{x: Fx(x)>u}, 0<u<1
If U~ U(0,1), then for all x € R it holds

P(Fx'(U) < x) = P(inf{t: Fx(t) = U} < x)
= P(U< Fx(x)
= Fu(Fx(X)) = Fx(X).

Thus, F; '(U) has the same distribution as X.
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INVERSE TRANSFORM SAMPLING /2

Algorithm
@ Calculate inverse function Fy ' (u).
@ For each random number:

e Generate random u from U(0, 1).
o Calculate x = F; ' (u).

This theoretically solves the problem of simulating continuous random
numbers. However, if F~! is difficult to compute, other methods are
often preferred.
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EX. INVERSION: UNIFORM DISTRIBUTION

Be U ~ U(0, 1)
Aim: X ~ U(a, b)
0 x<a
F(x) =14 3=2 x¢clab]
1 X>b
X—a
=u
b—a
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EX. INVERSION: EXPONENTIAL DISTRIBUTION

Be U ~ U(0,1)
Aim: X ~ Exp(\)
Fix)=1-e Ly
& —x\ = log(1 —u)

~ —log(1 —u)
= X = \

Since
U~U(0,1) = 1-U~U(0,1)

RV can be generated from Fy '*(u) = _I+g(“)-
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INVERSION FOR DISCRETE RANDOM VARIABLES

X is a discrete random variable and
e < Xjim1 <X < Xjp1 <.

are steps in Fx(x). Then the inversion is Fy ' (u) = x;, with
Fx(X,;1) <u< Fx(X,‘).

Algorithm
@ Draw random u from U(0, 1).
@ Output x; with Fx(xi—1) < u < Fx(x).

Solving F(xi—1) < u < F(x;) in (2.) can be difficult.
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EX. INVERSION: GEOMETRIC DISTRIBUTION

Aim: Generate random numbers from Geom(p = 1).

At points of discontinuity (x = 0,1, 2, ...) the density function is
fx(x) = pg*, with g = 1 — p and distribution function is

Fx(x) =1—qg*t.

Solve 1 — ¢ < u <1 — g, with ufrom U(0, 1).

Equation system corresponds to x < log(1 — u)/log(q) < x + 1.

Solution: x + 1 = [log(1 — u)/log(q)].
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LIMITATIONS OF INVERSION SAMPLING

@ The quality of the random numbers is heavily dependent on the
quality of the quantile function.

@ While F is often easy to calculate, the computation of F~! can be

difficult:
= Solve numerically F(X) — U = 0.

@ Especially for quantile functions, which approximate the
distribution function numerically in the corresponding integral, the
inversion method is inefficient and inaccurate.

@ But: in R for example, normally distributed random numbers are
currently calculated using inverse transform sampling.

Algorithms and Data Structures — 7/ 14

X X



TRANSFORMATIONS

For the simulation of specifically distributed random variables
transformations of other random variables can be used, e.g.:

Q 11 Z ~ N(0,1),then V = Z% ~ x2(1).
Q If U~ x3(m) and V ~ x2(n) are independent, then

F= %’: ~ F(m,n).

@ If Z ~ N(0,1) and V ~ x?(n) are independent, then

_Z el
T—\/V—/HIS t(n).

Q If U~ Gamma(r,\) and V ~ Gamma(s, \) are independent,
then X = ~ Beta(r, s).

u
u+v
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MIXTURE DISTRIBUTIONS

Random variable X follows (discrete) mixture distribution, if X ~ Fy

K
Fx(x) = Z 0iFx(x)

for a set of K random variables Xi, X», ..., Xk, with 6; > 0 and

S0 =1,

Simulation of mixture distributions:
@ Drawinteger k € {1, ..., K}, with P(k) = 6.
© Draw random number x from Fy, .
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MIXTURE DISTRIBUTIONS /2

Example: Mixture distribution

Draw from a 50%-50% - mixture of N(0, 1) and N(3,0.5) X

Density

0.10 0.20 0.30

0.00

Histogram of x

. X X
N
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SAMPLING MULTIVARIATE GAUSSIAN
X = (X1 , ...,Xd) ~ Nd(p,, Z)Z
1 1 _
f(x) = W@(P(—E(X —p)TE 7 (x — )

with mean g = (p1, ..., 1) " and symmetrical, positive definite
covariance matrix X.

Sampling from multivariate Gaussian:
@ Generate Z = (24, ..., Zy), with Z < N(0,1).
@ Transform random vector Z to desired mean and covariance.
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SAMPLING MULTIVARIATE GAUSSIAN /2

Derivation of Transformation:
@ If Z ~ Ny(p,X), then CZ + bis ~ Ny(Cp + b, CECT).
@ If Z ~ Ny(0,1y),then CZ + bis ~ Ny(b, CCT).

@ Assuming ¥ can be factorized into ¥ = CCT for a matrix C, then
CZ + p ~ Ny(p, X).

@ Hence, CZ + p is the transformation we are looking for.
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SAMPLING MULTIVARIATE GAUSSIAN /3

@ Calculation of the square root ¥'/2 = C by spectral
decomposition.

@ ¥ = PAP~" with A being a diagonal matrix of the eigenvalues of
> and P being a matrix with the orthogonal eigenvectors in the
columns space (P~ = PT).

@ Y '/2 then corresponds to X 1/2 = PA/2P—1 with
N2 = diag(\}/2, ... AY/?).

@ There are other possibilities to factorize ¥ (e.g. Cholesky
decomposition) — see chapter 7.
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SAMPLING MULTIVARIATE GAUSSIAN /4

mvtnorm

Transformed

Std. MVN

X X
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