Algorithms and Data Structures

Random Numbers Mersenne Twister & R

X X

Learning goals

- Mersenne Twister algorithm
- **Properties of Mersenne Twister**
- **•** Implementation in R

The **Mersenne Twister** is currently the most frequently used random number generator and was developed in 1997 by M. Matsumoto and T. Nishimura.

[https://www.cryptologie.net/article/331/](https://www.cryptologie.net/article/331/how-does-the-mersennes-twister-work/) [how-does-the-mersennes-twister-work/](https://www.cryptologie.net/article/331/how-does-the-mersennes-twister-work/)

Note: Here, random numbers *xⁱ* are represented by *w*-bit vectors (usually $w = 32,64$. To emphasize this, we write \mathbf{x}_i (in bold).

Description of the algorithm:

1 Initialization: A seed \mathbf{x}_0 is set, and the first *n* values are calculated based on it (not described here). These values are not part of the final output.

 $^{\prime}$ \times

² Recursion: Formally the following recursion formula is used

$$
\mathbf{x}_{k+n} = \mathbf{x}_{k+m} \bigoplus_{3} \underbrace{(\mathbf{x}_k' || \mathbf{x}_{k+1}^r)}_{1} \underbrace{\mathbf{A}}_{2}
$$

- *n*: Degree of recurrence, "size" of blocks
- *m*: Integer $1 \le m \le n$
- \mathbf{x}_{k}^{l} , \mathbf{x}_{k}^{r} : Left and right part of the vector x_{k}
- 0 ≤ *c* ≤ *w*−1 determines where the "left part" ends

 $\mathbf{\times}$

For ease of exposition, let $w = 4$, $c = 2$.

1. Concatenation:

$$
\mathbf{x}_{k+1}\begin{pmatrix}0&1&1&0\\1&0&1&0\\1&1&1&1\end{pmatrix}\Rightarrow\begin{pmatrix}x'_{k}||x'_{k+1})\\(x'_{k+1}||x'_{k+2})\end{pmatrix}=(0,1,1,0)
$$

$$
\mathbf{x}_{k+2}\begin{pmatrix}1&1&1&1\\1&1&1&1\end{pmatrix}\Rightarrow\begin{pmatrix}x'_{k+1}||x'_{k+2}\end{pmatrix}=(1,0,1,1)
$$

2. Multiplication by A:

We multiply with the so-called **Twist Matrix A**

$$
\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_3 & a_2 & a_1 & a_0 \end{pmatrix}
$$

$$
(0, 1, 1, 0) \mathbf{A} = (0, 0, 1, 1)
$$

\n
$$
(1, 0, 1, 1) \mathbf{A} = (0 \oplus a_3, 1 \oplus a_2, 0 \oplus a_1, 1 \oplus a_0)
$$

\nIn summary $\mathbf{xA} = \begin{cases} \text{shift}(\mathbf{x}), & \text{if last bit } x_0 = 0 \\ \text{shift}(\mathbf{x}) \oplus \mathbf{a}, & \text{if } x_0 = 1 \end{cases}$

3. XOR:

In the last step a bitwise XOR is calculated, e.g.

$$
\mathbf{x}_{k+m}\bigoplus(0,0,1,1)
$$

 $\boldsymbol{\mathsf{X}}$ $\times\overline{\times}$

³ Tempering: In the last step, tempering is applied to the generated random numbers in order to improve their distribution properties.

 \mathbf{X}

The following operations are performed:

$$
\mathbf{x} \rightarrow \mathbf{y} := \mathbf{x} \oplus ((\mathbf{x} >> u) \text{ AND } \mathbf{d})
$$
\n
$$
\mathbf{y} \rightarrow \mathbf{y} := \mathbf{y} \oplus ((\mathbf{y} << s) \text{ AND } \mathbf{b})
$$
\n
$$
\mathbf{y} \rightarrow \mathbf{y} := \mathbf{y} \oplus ((\mathbf{y} << t) \text{ AND } \mathbf{c})
$$
\n
$$
\mathbf{y} \rightarrow \mathbf{z} := \mathbf{y} \oplus (\mathbf{y} >> t)
$$

X X

where $x \gg u$ ($x \ll u$) describes the bitwise "right"-shift ("left"-shift) by *u* and "AND" describes the bitwise "and".

This can be summarized as follows:

$$
\mathbf{x}\mapsto\mathbf{z}=\mathbf{x}\mathbf{T}.
$$

Coefficients for MT19937: (standard implementation 32-bit)

- **w** word size (in number of bits): 32
- **n** degree of recurrence: 624
- **m** middle word, an offset used in the recurrence relation defining the series x: 397
- **c** separation point of one word, or the number of bits of the lower bitmask: 31
- **a** coefficients of the rational normal form twist matrix: 9908*B*0*DF*¹⁶
- **u, d, I** tempering masks/shifts: (11, *FFFFFFFF*₁₆, 18)
	- **s, b** tempering masks/shifts: (7, 9*D*2*C*5680₁₆)
	- **t, c** tempering masks/shifts: (15, *EFC*6000016)

Properties:

- \bullet Extremely long period of $2^{19937} 1 \approx 4.3 \cdot 10^{6001}$ (so-called "Mersenne prime")
- All bits of the output sequence are uniformly distributed \rightarrow thus the corresponding integer values are also uniformly distributed
- Low correlation of consecutive values
- Fast implementation by calculating $n (n = 624$ in MT19937) random numbers in one step
- Highly parallelizable

Further information:

- <www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf> (Original paper Mersenne Twister)
- <http://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf> (Lecture on PRNGs)

 \times \times

TRANSFORMATION TO THE INTERVAL (0, 1)

- In the procedures discussed, integers between 0 and *m* − 1 were generated.
- \bullet If real random numbers in the interval $(0, 1)$ need to be simulated, a simple division by *m* is sufficient.
- **Problem:** The random number can be 0, while for an "actual" (0, 1) - uniformly distributed random variable *U* the following holds:

 $\mathbb{P}(U=0)=0$

- This is often a problem in practical applications, e.g. with log(*U*).
- If a 0 is generated, the random number can be discarded or an error message is issued.
- Since modern congruential generators have a long period, this is unlikely.

PRNGS IN R

The Mersenne Twister is (currently) the default method in R with period $2^{19937} - 1 \approx 10^{6001}$ and guaranteed uniform distribution in 623 dimensions. Seeds are 624 32-bit integers on top of the current position in this set. The set.seed() function generates a valid seed from a single integer value using the linear congruential generator with

$$
m = 2^{32}
$$
, $a = 69069$, $b = 1$

There are a number of other generators available. Furthermore, the user can also specify her own generator as default. RNGversion(x,y,z') can be used to set the random generators as they were in an earlier R version (for reproducibility) (Wichman-Hill up to 0.98, Marsaglia-Multicarry up to 0.00). 1.6.1). Initialization of the seed via time.

X X

R: RANDOM NUMBER GENERATION

```
• set.seed() function
  set.seed(123); u1 <- runif(100)
  set.seed(123); u2 <- runif(100)
  identical(u1, u2) # the same because of identical RNG status
  ## [1] TRUE
```
- .Random.seed() is an integer vector, containing the random number generator (RNG) state for random number generation in R. It can be saved and restored, but should not be altered by the user.
- RNG kind () is a more friendly interface to query or set the kind of RNG in use.

```
# default for "kind", "normal kind" and "sample kind"
RNGkind("default")
RNGkind()
## [1] "Mersenne-Twister" "Inversion" "Rejection"
.Random.seed[1:3] # the default random seed is 626 integers
## [1] 10403 624 1858651209
```
XX

R: RANDOM NUMBER GENERATION / 2

Change default of kind ("Mersenne-Twister") to "Wichmann-Hill"

```
RNGkind("Wich")
RNGkind()
## [1] "Wichmann-Hill" "Inversion" "Rejection"
.Random.seed
## [1] 10400 5989 8337 9843
```
Change methods depending on defaults in a specific R Version

```
RNGversion(getRversion()) # current version
RNGkind()
## [1] "Mersenne-Twister" "Inversion" "Rejection"
RNGversion("1.0.0") # first \texttt{R} version
## Warning in RNGkind("Marsaglia-Multicarry", "Buggy
Kinderman-Ramage", "Rounding"): buggy version of
Kinderman-Ramage generator used
## Warning in RNGkind("Marsaglia-Multicarry", "Buggy
Kinderman-Ramage", "Rounding"): non-uniform 'Rounding'
sampler used
```
 $\overline{\mathbf{x}\mathbf{x}}$

PARALLEL COMPUTING

A complex topic is the application of random number generators for parallel computing, where a long calculation is split between several machines and processed in parallel. Usually, a "master" distributes the jobs to several "slaves". Initialization of seed using the two "standard" methods

- Time of day or
- Fixed given number

is not useful. Special algorithms for this purpose are provided e.g. in the R packages **rlecuyer** or **rstreams** (both use the same algorithm from L'Ecuyer).

 $\overline{}$