
Algorithms and Data Structures

Random Numbers
Mersenne Twister & R

Learning goals
Mersenne Twister algorithm

Properties of Mersenne Twister

Implementation in R



MERSENNE TWISTER

The Mersenne Twister is currently the most frequently used random
number generator and was developed in 1997 by M. Matsumoto and T.
Nishimura.

https://www.cryptologie.net/article/331/

how-does-the-mersennes-twister-work/

© Algorithms and Data Structures – 1 / 14

https://www.cryptologie.net/article/331/how-does-the-mersennes-twister-work/
https://www.cryptologie.net/article/331/how-does-the-mersennes-twister-work/


MERSENNE TWISTER / 2

Note: Here, random numbers xi are represented by w-bit vectors (usually
w = 32, 64). To emphasize this, we write xi (in bold).

Description of the algorithm:
1 Initialization: A seed x0 is set, and the first n values are

calculated based on it (not described here). These values are not
part of the final output.

© Algorithms and Data Structures – 2 / 14



MERSENNE TWISTER / 3

2 Recursion: Formally the following recursion formula is used

xk+n = xk+m

⊕
︸︷︷︸

3.

(xl
k ||xr

k+1)︸ ︷︷ ︸
1.

A︸︷︷︸
2.

n: Degree of recurrence, "size" of blocks
m: Integer 1 ≤ m < n
xl

k , xr
k : Left and right part of the vector xk

0 ≤ c ≤ w−1 determines where the "left part" ends

© Algorithms and Data Structures – 3 / 14



MERSENNE TWISTER / 4

For ease of exposition, let w = 4, c = 2.

1. Concatenation:

xk

xk+1

xk+2

0 1 1 0
1 0 1 0
1 1 1 1

 ⇒ (x l
k ||x r

k+1) = (0, 1, 1, 0)
(x l

k+1||x r
k+2) = (1, 0, 1, 1)

© Algorithms and Data Structures – 4 / 14



MERSENNE TWISTER / 5

2. Multiplication by A:
We multiply with the so-called Twist Matrix A

A =


0 1 0 0
0 0 1 0
0 0 0 1
a3 a2 a1 a0


(0, 1, 1, 0)A = (0, 0, 1, 1)

(1, 0, 1, 1)A = (0 ⊕ a3, 1 ⊕+a2, 0 ⊕ a1, 1 ⊕ a0)

In summary xA =

{
shift(x), if last bit x0 = 0

shift(x)⊕ a, if x0 = 1

3. XOR:
In the last step a bitwise XOR is calculated, e.g.

xk+m

⊕
(0, 0, 1, 1)

© Algorithms and Data Structures – 5 / 14



MERSENNE TWISTER / 6

3 Tempering: In the last step, tempering is applied to the generated
random numbers in order to improve their distribution properties.

© Algorithms and Data Structures – 6 / 14



MERSENNE TWISTER / 7

The following operations are performed:

x 7→ y := x ⊕ ((x >> u) AND d)

y 7→ y := y ⊕ ((y << s) AND b)

y 7→ y := y ⊕ ((y << t) AND c)

y 7→ z := y ⊕ (y >> l)

where x >> u (x << u) describes the bitwise "right"-shift ("left"-shift)
by u and "AND" describes the bitwise "and".

This can be summarized as follows:

x 7→ z = xT.

© Algorithms and Data Structures – 7 / 14



MERSENNE TWISTER / 8

Coefficients for MT19937: (standard implementation 32-bit)

w word size (in number of bits): 32

n degree of recurrence: 624

m middle word, an offset used in the recurrence relation
defining the series x: 397

c separation point of one word, or the number of bits of the
lower bitmask: 31

a coefficients of the rational normal form twist matrix:
9908B0DF16

u, d, l tempering masks/shifts: (11,FFFFFFFF16, 18)

s, b tempering masks/shifts: (7, 9D2C568016)

t, c tempering masks/shifts: (15,EFC6000016)

© Algorithms and Data Structures – 8 / 14



MERSENNE TWISTER / 9

Properties:

Extremely long period of 219937 − 1 ≈ 4.3 · 106001 (so-called
"Mersenne prime")

All bits of the output sequence are uniformly distributed → thus the
corresponding integer values are also uniformly distributed

Low correlation of consecutive values

Fast implementation by calculating n (n = 624 in MT19937)
random numbers in one step

Highly parallelizable

Further information:

www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf

(Original paper Mersenne Twister)

http://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf (Lecture on
PRNGs)

© Algorithms and Data Structures – 9 / 14

www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf
http://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf


TRANSFORMATION TO THE INTERVAL (0, 1)
In the procedures discussed, integers between 0 and m − 1 were
generated.

If real random numbers in the interval (0, 1) need to be simulated,
a simple division by m is sufficient.

Problem: The random number can be 0, while for an "actual"
(0, 1) - uniformly distributed random variable U the following holds:

P(U = 0) = 0

This is often a problem in practical applications, e.g. with log(U).

If a 0 is generated, the random number can be discarded or an
error message is issued.

Since modern congruential generators have a long period, this is
unlikely.

© Algorithms and Data Structures – 10 / 14



PRNGS IN R

The Mersenne Twister is (currently) the default method in R with period
219937 − 1 ≈ 106001 and guaranteed uniform distribution in 623
dimensions. Seeds are 624 32-bit integers on top of the current position
in this set. The set.seed() function generates a valid seed from a
single integer value using the linear congruential generator with

m = 232, a = 69069, b = 1

There are a number of other generators available. Furthermore, the
user can also specify her own generator as default.
RNGversion('x.y.z') can be used to set the random generators as
they were in an earlier R version (for reproducibility) (Wichman-Hill up to
0.98, Marsaglia-Multicarry up to 0.00). 1.6.1). Initialization of the seed
via time.

© Algorithms and Data Structures – 11 / 14



R: RANDOM NUMBER GENERATION

set.seed() function
set.seed(123); u1 <- runif(100)

set.seed(123); u2 <- runif(100)

identical(u1, u2) # the same because of identical RNG status

## [1] TRUE

.Random.seed() is an integer vector, containing the random
number generator (RNG) state for random number generation in R.
It can be saved and restored, but should not be altered by the user.
RNGkind() is a more friendly interface to query or set the kind of
RNG in use.
# default for "kind", "normal kind" and "sample kind"

RNGkind("default")

RNGkind()

## [1] "Mersenne-Twister" "Inversion" "Rejection"

.Random.seed[1:3] # the default random seed is 626 integers

## [1] 10403 624 1858651209

© Algorithms and Data Structures – 12 / 14



R: RANDOM NUMBER GENERATION / 2

Change default of kind ("Mersenne-Twister") to "Wichmann-Hill"
RNGkind("Wich")

RNGkind()

## [1] "Wichmann-Hill" "Inversion" "Rejection"

.Random.seed

## [1] 10400 5989 8337 9843

Change methods depending on defaults in a specific R Version
RNGversion(getRversion()) # current version

RNGkind()

## [1] "Mersenne-Twister" "Inversion" "Rejection"

RNGversion("1.0.0") # first \texttt{R} version

## Warning in RNGkind("Marsaglia-Multicarry", "Buggy

Kinderman-Ramage", "Rounding"): buggy version of

Kinderman-Ramage generator used

## Warning in RNGkind("Marsaglia-Multicarry", "Buggy

Kinderman-Ramage", "Rounding"): non-uniform 'Rounding'

sampler used

© Algorithms and Data Structures – 13 / 14



PARALLEL COMPUTING

A complex topic is the application of random number generators for
parallel computing, where a long calculation is split between several
machines and processed in parallel. Usually, a "master" distributes the
jobs to several "slaves". Initialization of seed using the two "standard"
methods

Time of day or

Fixed given number

is not useful. Special algorithms for this purpose are provided e.g. in
the R packages rlecuyer or rstreams (both use the same algorithm
from L’Ecuyer).

© Algorithms and Data Structures – 14 / 14


