Algorithms and Data Structures

Quadrature
Monte Carlo Integration

How Monte Carlo Method Works?

Learning goals
@ Simple Monte Carlo

aaaaaa

(" @ Hit-or-Miss approach

X X

SIMPLE MONTE CARLO

Goal: Calculate /(f) = f: f(x) dx
@ We define

b
I(f):(b—a)/a f(x).b1

p dx = (b— a) - E[f(x)]
with x ~ U(a, b)

@ With x; X U(a, b),i =1,...,nthe Monte Carlo estimation is given
by

Que(r) = 223" 1(x)

=1
@ By "sampling" n independent random numbers from U(a, b) an
estimate for the integral can be calculated.

Algorithms and Data Structures — 1/9

X X

SIMPLE MONTE CARLO /2

Monte Carlo is a non-deterministic approach. The estimation for the
integral fab f(x) dx is subject to randomness:

@ The strong law of large numbers states that Quc(f) converges
almost certainly towards /(f) = E[f(x)] for n — oo

@ We can derive the variance from Quc(f):

Var (Quo(f)) = Var (b —a Z f(x,-)>

n -
i=1

o (b;f)z n-Var(f(x)) = 2 &

where o2 = Var(f(x)) denotes the variance of the random variable
f(x) with x ~ U(a, b) which can be empirically estimated by

n n 2 i
9= 52 (1) = 15000 o Uab),
i=1 i=1

Algorithms and Data Structures — 2/9

X X

SIMPLE MONTE CARLO /3

@ If 02 < oo the variance of the estimate (and thus also the worst
case error of the procedure) approaches 0 for n — oo
@ Monte Carlo also works well in multidimensional settings:

e The Monte Carlo integration can simply be generalized to
multidimensional integrals [, f(x) dx with Q € RY by
drawing the random variables uniformly distributed in the
d-dimensional space 2.

e The variance is then

2
Var(QMc(f)):Laz, v—/ dx
n Q

e In particular, the speed of convergence for the variance does
not depend on the dimension of the function to be integrated.

Algorithms and Data Structures — 3/9

X X

HIT-OR-MISS

Idea:
We draw n independently uniformly distributed data points from a
rectangle enclosing our function:

Algorithms and Data Structures — 4/9

X X

HIT-OR-MISS /2

"Hit-or-Miss™ Approach:

We still consider the integral fab f(x)dx. We assume that 0 < f(x) < c.
If we count the number of hits (the points underneath the curve), we
obtain the integral by:

n
> 1y<r(x)

Hits —
~ — - area of the rectangle = MT -c-(b—a)

n

I(f)

Algorithms and Data Structures — 5/9

X X

HIT-OR-MISS /3

m$estimate # Estimation of area

[1] 2.288
m$hits # Number of points underneath the curve
[1] 286
286
I(f)~ == -1*4=2288
500

This naive method works well for simple examples, but error rates are
high for more complex applications.

Algorithms and Data Structures — 6/9

X X

HIT-OR-MISS /4

Advantages:
@ Monte Carlo integration does not require continuity for f

@ Error does not depend on the dimension (in contrast to
deterministic quadrature formulas), but only on the variance of the
function f and the number of simulations n

e — Improve precision through high number of simulations
e — Improve precision by reducing variance

Disadvantages:
@ Relatively slow convergence rates

Algorithms and Data Structures — 7/9

X X

HIT-OR-MISS /5

set.seed(333)

T = 10000; shape = 2; rate =1 / 2
theta = rgamma(T, shape = shape, rate = rate)

hist(theta, freq = FALSE, ylim = c(0, 0.2), main = "")
lines(density(theta))

Density
010 015 020
L L)

005
L

000
L

Algorithms and Data Structures — 8/9

X X

HIT-OR-MISS /6

(Etheta = mean(theta)) # MC estimator

[1] 4.007281

(se.Etheta = sqrt(var(theta) / T)) # variance
[1] 0.02841768

shape * 1 / rate # Theoretical expectation

[1] 4

(Ptheta = mean(theta > 5)) # MC Estimator

[1] 0.2863

(se.Ptheta = sqrt(var(theta > 5) / T)) # variance

[1] 0.004520539

1 - pgamma(5, shape = shape, rate = rate) # theo value
[1] 0.2872975

f = function(x) {dgamma(x, shape = shape, rate = rate)}
integrate(f, 5, Inf) # Numerical integration in R

0.2872975 with absolute error < 9.3e-05

Algorithms and Data Structures — 9/9

X X

