
Algorithms and Data Structures

Quadrature
Monte Carlo Integration

Learning goals
Simple Monte Carlo

Hit-or-Miss approach

SIMPLE MONTE CARLO

Goal: Calculate I(f) =
∫ b

a f (x) dx

We define

I(f) = (b − a)
∫ b

a
f (x) · 1

b − a
dx = (b − a) · E[f (x)]

with x ∼ U(a, b)

With xi
iid∼ U(a, b), i = 1, ..., n the Monte Carlo estimation is given

by

QMC(f) =
b − a

n

n∑
i=1

f (xi)

By "sampling" n independent random numbers from U(a, b) an
estimate for the integral can be calculated.

© Algorithms and Data Structures – 1 / 9

SIMPLE MONTE CARLO / 2

Monte Carlo is a non-deterministic approach. The estimation for the
integral

∫ b
a f (x) dx is subject to randomness:

The strong law of large numbers states that QMC(f) converges
almost certainly towards I(f) = E[f (x)] for n → ∞
We can derive the variance from QMC(f):

Var (QMC(f)) = Var

(
b − a

n

n∑
i=1

f (xi)

)
iid
=

(b − a)2

n2 · n · Var(f (x)) =
(b − a)2

n
σ2

where σ2 = Var(f (x)) denotes the variance of the random variable
f (x) with x ∼ U(a, b) which can be empirically estimated by

σ̂2 = 1
n−1

n∑
i=1

(
f (xi)− 1

n

n∑
i=1

f (xi)

)2

, xi
iid∼ U(a, b).

© Algorithms and Data Structures – 2 / 9

SIMPLE MONTE CARLO / 3

If σ2 < ∞ the variance of the estimate (and thus also the worst
case error of the procedure) approaches 0 for n → ∞
Monte Carlo also works well in multidimensional settings:

The Monte Carlo integration can simply be generalized to
multidimensional integrals

∫
Ω f (x) dx with Ω ⊂ Rd by

drawing the random variables uniformly distributed in the
d-dimensional space Ω.
The variance is then

Var (QMC(f)) =
V 2

n
σ2, V =

∫
Ω

dx

In particular, the speed of convergence for the variance does
not depend on the dimension of the function to be integrated.

© Algorithms and Data Structures – 3 / 9

HIT-OR-MISS

Idea:
We draw n independently uniformly distributed data points from a
rectangle enclosing our function:

© Algorithms and Data Structures – 4 / 9

HIT-OR-MISS / 2

"Hit-or-Miss" Approach:
We still consider the integral

∫ b
a f (x)dx . We assume that 0 ≤ f (x) ≤ c.

If we count the number of hits (the points underneath the curve), we
obtain the integral by:

I(f) ≈ Hits
n

· area of the rectangle =

n∑
i=1

1yi≤f (xi)

n
· c · (b − a)

© Algorithms and Data Structures – 5 / 9

HIT-OR-MISS / 3

m$estimate # Estimation of area

[1] 2.288

m$hits # Number of points underneath the curve

[1] 286

I(f) ≈ 286
500

· 1 * 4 = 2.288

This naive method works well for simple examples, but error rates are
high for more complex applications.

© Algorithms and Data Structures – 6 / 9

HIT-OR-MISS / 4

Advantages:

Monte Carlo integration does not require continuity for f

Error does not depend on the dimension (in contrast to
deterministic quadrature formulas), but only on the variance of the
function f and the number of simulations n

→ Improve precision through high number of simulations
→ Improve precision by reducing variance

Disadvantages:

Relatively slow convergence rates

© Algorithms and Data Structures – 7 / 9

HIT-OR-MISS / 5

set.seed(333)

T = 10000; shape = 2; rate = 1 / 2

theta = rgamma(T, shape = shape, rate = rate)

hist(theta, freq = FALSE, ylim = c(0, 0.2), main = "")

lines(density(theta))

© Algorithms and Data Structures – 8 / 9

HIT-OR-MISS / 6

(Etheta = mean(theta)) # MC estimator

[1] 4.007281

(se.Etheta = sqrt(var(theta) / T)) # variance

[1] 0.02841768

shape * 1 / rate # Theoretical expectation

[1] 4

(Ptheta = mean(theta > 5)) # MC Estimator

[1] 0.2863

(se.Ptheta = sqrt(var(theta > 5) / T)) # variance

[1] 0.004520539

1 - pgamma(5, shape = shape, rate = rate) # theo value

[1] 0.2872975

f = function(x) {dgamma(x, shape = shape, rate = rate)}

integrate(f, 5, Inf) # Numerical integration in R

0.2872975 with absolute error < 9.3e-05

© Algorithms and Data Structures – 9 / 9

