Algorithms and Data Structures

Quadrature Laplace's method

X X X

Learning goals

• Laplace's method

Target: Approximate integral of function *f* with the following properties:

- The mass concentrates on a small area around a center and the function has very rapidly decreasing tails ("similarity" to the density of a normal distribution)
- The function we want to integrate is the density of a random variable that is approximately normally distributed

X

In particular, we assume that *f*

- Can only be positive
- Is two times continuously differentiable
- \bullet Has a **global maximum** at x_0

We could approximate the area underneath the graph of the function with a staircase function and represent the integral with a very simple formula that depends on $f(x_0)$:

$$
\int f(x) \ dx \approx f(x_0) \cdot c
$$

 $\mathbf{\times}$

But instead of the step function we would like to choose a function that approximates *f* **better** and which has well-known properties.

Idea: Approximate the integral using the density function of the normal distribution!

How? We center and scale the density function of the normal distribution such that it approximates *f* "best possible".

 \times \times

In other words: We determine **expectation** and **standard deviation** of a normal distribution such that the corresponding density function fits best possible to the function *f* we are interested in.

X \times \times

Mathematical derivation:

Let there be a function f with a global maximum at x_0 .

We define $h(x) := \log f(x)$ as the logarithmized function and rewrite the integral

$$
\int_a^b f(x) \ dx = \int_a^b \exp(\underbrace{\log f(x)}_{:=h(x)}) \ dx
$$

Using Taylor's theorem around x_0 we obtain

$$
\int_{a}^{b} \exp(h(x)) \approx \int_{a}^{b} \exp\left(h(x_{0}) + h'(x_{0})(x - x_{0}) + \frac{1}{2}h''(x_{0})(x - x_{0})^{2}\right) dx
$$

 x_0 is also the maximum of $h(x) = \log(f(x))$. Hence, $h'(x_0) = 0$ and the second summand disappears:

$$
\int_a^b \exp\left(h(x)\right) \ dx \approx \int_a^b \exp\left(h(x_0) + \frac{1}{2}h''(x_0)(x-x_0)^2\right) dx
$$

We take advantage of the fact that $exp(x + y) = exp(x) exp(y)$

$$
\int_a^b \exp\left(h(x_0)\right) \cdot \exp\left(\frac{1}{2}h''(x_0)(x-x_0)^2\right) dx
$$

and pull the constant $\exp(h(x_0))$ out of the integral

$$
\exp\left(h(x_0)\right)\cdot\int_a^b \exp\left(\frac{1}{2}h''(x_0)(x-x_0)^2\right)dx
$$

Within the integral there is now an expression which "almost" corresponds to the density of a normal distribution with expectation $\mu:=x_0$ and variance $\sigma^2:=-h''(x_0)^{-1}$:

$$
\int_{a}^{b} f(x)dx \approx \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(\frac{1}{2}h''(x_0)(x-x_0)^2\right) dx
$$

$$
= \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(-\frac{1}{2}\frac{(x-x_0)^2}{-h''(x_0)^{-1}}\right) dx
$$

$$
= \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right) dx
$$

 \times \times

 $-h''(x_0)^{-1}$ must be truly positive to correspond to the variance of a normal distribution. Since $h(x)$ has a global maximum in $x₀$, the second derivative at this point is negative and therefore $-h''(x_0)^{-1}>0.$

If we add (and cancel) the multiplicative constant $c = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi\sigma^2}$, we obtain

$$
\int_{a}^{b} f(x)dx \approx \frac{1}{c} \cdot \exp(h(x_{0})) \cdot \int_{a}^{b} \underbrace{c \cdot \exp\left(-\frac{1}{2}\frac{(x-\mu)^{2}}{\sigma^{2}}\right)}_{\text{Density ND}} dx
$$
\n
$$
= \frac{1}{c} \underbrace{\exp(h(x_{0}))}_{f(x_{0})} \cdot \int_{a}^{b} \phi_{\mu,\sigma^{2}}(x) dx
$$
\n
$$
= \frac{1}{c} f(x_{0}) \cdot (\Phi_{\mu,\sigma^{2}}(b) - \Phi_{\mu,\sigma^{2}}(a))
$$

 \times \times

where $\phi_{\mu,\sigma^2}(x)$ denotes the density and $\Phi_{\mu,\sigma^2}(x)$ the distribution function of a normal distribution with expectation μ and variance $\sigma^2.$

For integration limits $b = \infty$ and $a = -\infty$ Laplace's method of *f* is then

$$
\int_{-\infty}^{\infty} f(x) dx \approx \frac{1}{c} \cdot f(x_0) \cdot (\Phi_{\mu,\sigma^2}(+\infty) - \Phi_{\mu,\sigma^2}(-\infty))
$$

$$
= \sqrt{-\frac{2\pi}{h''(x_0)}} \cdot f(x_0)
$$

$$
\begin{array}{c}\n\times \\
\times \\
\times \\
\times \\
\hline\n\end{array}
$$

with $h(x) = \log f(x)$.

Laplace's method thus corresponds to a value that only depends on the maximum of the function $f(x_0)$ and the curvature of the logarithmic function $h''(x_0)$.

Laplace's method also works well in higher dimensions. For $f: \mathbb{R}^m \to \mathbb{R}$ with global maximum in x_0 the generalized form is given by

$$
I(f) \approx (2\pi)^{m/2} \det(-H_f(x_0)^{-1})^{1/2} \exp(f(x_0))
$$

where $H_f(x_0)$ denotes the Hessian matrix of f at x_0 . Since x_0 is a global maximum, $H_f(x_0)$ is negative definite.

The problem of integration is reduced to

- Solving an optimization problem \rightarrow find x_0
- Determining the second derivative $h''(x)$ (or generally the Hessian matrix $H_f(\mathbf{x})$ at the optimal position x_0 .

Instead of integration, an optimization problem must now be solved, which is often much easier and faster.

Application example: Bayesian computation

Given:

 $x|\lambda \sim$ Poisson(λ) (Likelihood) $\lambda \sim$ Gamma (α, β) (Prior)

Wanted: Posterior density of the parameter λ given *n* observations $\boldsymbol{x} = (x^{(1)}, x^{(2)}, ..., x^{(n)})$

$$
\mathit{Posterior}\atop \mathit{p}(\lambda|\mathbf{x}) = \frac{\mathit{Likelihood}\atop \mathit{p}(\mathbf{x}|\lambda)\cdot\pi(\lambda)}{\int\mathit{p}(\mathbf{x}|\lambda)\cdot\pi(\lambda)\;d\lambda}
$$

The density of the gamma distribution is given by $\pi_{\alpha,\beta}(\lambda)=\frac{1}{\beta^\alpha\Gamma(\alpha)}\lambda^{\alpha-1}\exp(-\lambda\beta)$

To keep the calculations simple, we calculate the posterior density for only **one** observation *x*.

The posterior density of λ given the observation x is (except for one constant)

$$
p(\lambda|x) \propto \lambda^{x+\alpha-1} \exp\left(-\frac{\lambda}{1/\beta+1}\right) =: f(\lambda).
$$

So to determine the posterior density $p(\lambda|x)$ exactly, we search for the normalization constant c , which ensures that $\int c \cdot f(\lambda) \ d\lambda =$ 1, hence

$$
c \cdot \int f(\lambda) d\lambda = 1
$$

$$
c = \frac{1}{\int f(\lambda) d\lambda}
$$

Goal: Approximation of $\int f(\lambda) d\lambda$ with $f(\lambda) = \lambda^{x+\alpha-1} \exp \left(-\frac{\lambda}{1/\beta} \right)$ $\frac{\lambda}{1/\beta+1}$

We calculate $h(\lambda) = \log f(\lambda)$

$$
h(\lambda) = \log \left(\lambda^{x+\alpha-1} \cdot \exp(-\frac{\lambda}{1/\beta+1}) \right)
$$

= $(x+\alpha-1)\log \lambda - \frac{\lambda}{1/\beta+1}$

$$
h'(\lambda) = \frac{x+\alpha-1}{\lambda} - \frac{1}{1/\beta+1}
$$

$$
h''(\lambda) = -\frac{x+\alpha-1}{\lambda^2}
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

To approximate the integral using Laplace's method, we need $\lambda_0:=$ arg max $f(\lambda)$ and $h''(\lambda_0),$ where $h(\lambda):=\log(f(\lambda)).$

The maximum of $f(\lambda)$ is the same as the maximum of $h(\lambda)$ (easier to calculate)

$$
\frac{x+\alpha-1}{\lambda} - \frac{1}{1/\beta+1} = 0
$$

$$
\lambda_0 = \frac{x+\alpha-1}{1/\beta+1}
$$

and thus

$$
h''(\lambda_0) = -\frac{(1/\beta + 1)^2}{x + \alpha - 1}
$$

 \times \times

We insert $\lambda_{0}=\frac{x+\alpha-1}{1/\beta+1}$ $\frac{\alpha+\alpha-1}{1/\beta+1}$ and $\mathit{h}''(\lambda_0)$ into the formula for Laplace's method and obtain

$$
\int f(\lambda) d\lambda \approx \sqrt{-\frac{2\pi}{h''(\lambda_0)}} \cdot f(\lambda_0)
$$

$$
= \sqrt{2\pi} \cdot \frac{\sqrt{x + \alpha - 1}}{1/\beta + 1} \cdot f(\lambda_0)
$$

X $\overline{\mathbf{x}\ \mathbf{x}}$

Hence, the normalization constant *c* can be approximated by

$$
c = \frac{1}{\int f(\lambda) d\lambda} \approx \frac{1}{\sqrt{2\pi}} \frac{1/\beta + 1}{\sqrt{x + \alpha - 1}} \cdot \frac{1}{f(\lambda_0)}
$$

When calculating posterior distributions, Laplace's method provides a good approximation if

- The number *n* of observations is large
- The posterior distributions are roughly symmetric

 \times \times