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Laplace’s method



LAPLACE’S METHOD

Target: Approximate integral of function f with the following properties:

The mass concentrates on a small area around a center and the
function has very rapidly decreasing tails ("similarity" to the density
of a normal distribution)

The function we want to integrate is the density of a random
variable that is approximately normally distributed
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LAPLACE’S METHOD / 2

In particular, we assume that f

Can only be positive

Is two times continuously differentiable

Has a global maximum at x0

We could approximate the area underneath the graph of the function
with a staircase function and represent the integral with a very simple
formula that depends on f (x0):∫

f (x) dx ≈ f (x0) · c
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LAPLACE’S METHOD / 3

But instead of the step function we would like to choose a function that
approximates f better and which has well-known properties.

Idea: Approximate the integral using the density function of the normal
distribution!

How? We center and scale the density function of the normal
distribution such that it approximates f "best possible".
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LAPLACE’S METHOD / 4

In other words: We determine expectation and standard deviation of
a normal distribution such that the corresponding density function fits
best possible to the function f we are interested in.
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LAPLACE’S METHOD / 5

Mathematical derivation:
Let there be a function f with a global maximum at x0.

We define h(x) := log f (x) as the logarithmized function and rewrite
the integral ∫ b

a
f (x) dx =

∫ b

a
exp(log f (x)︸ ︷︷ ︸

:=h(x)

) dx

Using Taylor’s theorem around x0 we obtain

∫ b

a
exp (h(x)) ≈

∫ b

a
exp

(
h(x0) + h′(x0)(x − x0) +

1
2

h′′(x0)(x − x0)
2

)
dx
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LAPLACE’S METHOD / 6

x0 is also the maximum of h(x) = log(f (x)) . Hence, h′(x0) = 0 and
the second summand disappears:∫ b

a
exp (h(x)) dx ≈

∫ b

a
exp

(
h(x0) +

1
2

h′′(x0)(x − x0)
2
)

dx

We take advantage of the fact that exp(x + y) = exp(x) exp(y)∫ b

a
exp (h(x0)) · exp

(
1
2

h′′(x0)(x − x0)
2
)

dx

and pull the constant exp (h(x0)) out of the integral

exp (h(x0)) ·
∫ b

a
exp

(
1
2

h′′(x0)(x − x0)
2
)

dx
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LAPLACE’S METHOD / 7

Within the integral there is now an expression which "almost"
corresponds to the density of a normal distribution with expectation
µ := x0 and variance σ2 := −h′′(x0)

−1:∫ b

a
f (x)dx ≈ exp (h(x0)) ·

∫ b

a
exp

(
1
2

h′′(x0)(x − x0)
2
)

dx

= exp (h(x0)) ·
∫ b

a
exp

(
−1

2
(x − x0)

2

−h′′(x0)−1

)
dx

= exp (h(x0)) ·
∫ b

a
exp

(
−1

2
(x − µ)2

σ2

)
dx

−h′′(x0)
−1 must be truly positive to correspond to the variance of a normal distribution.

Since h(x) has a global maximum in x0, the second derivative at this point is negative

and therefore −h′′(x0)
−1 > 0.
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LAPLACE’S METHOD / 8

If we add (and cancel) the multiplicative constant c = 1√
2πσ2

, we obtain

∫ b

a
f (x)dx ≈ 1

c
· exp (h(x0)) ·

∫ b

a
c · exp

(
−1

2
(x − µ)2

σ2

)
︸ ︷︷ ︸

Density ND

dx

=
1
c
exp (h(x0))︸ ︷︷ ︸

f (x0)

·
∫ b

a
ϕµ,σ2(x) dx

=
1
c

f (x0) ·
(
Φµ,σ2(b)− Φµ,σ2(a)

)
where ϕµ,σ2(x) denotes the density and Φµ,σ2(x) the distribution
function of a normal distribution with expectation µ and variance σ2.
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LAPLACE’S METHOD / 9

For integration limits b = ∞ and a = −∞ Laplace’s method of f is then

∫ ∞

−∞
f (x)dx ≈ 1

c
· f (x0) ·

(
Φµ,σ2(+∞)− Φµ,σ2(−∞)

)
=

√
− 2π

h′′(x0)
· f (x0)

with h(x) = log f (x).

Laplace’s method thus corresponds to a value that only depends on the
maximum of the function f (x0) and the curvature of the logarithmic
function h′′(x0).
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LAPLACE’S METHOD / 10

Laplace’s method also works well in higher dimensions. For
f : Rm → R with global maximum in x0 the generalized form is given by

I(f ) ≈ (2π)m/2 det(−Hf (x0)
−1)1/2 exp(f (x0))

where Hf (x0) denotes the Hessian matrix of f at x0. Since x0 is a global
maximum, Hf (x0) is negative definite.

The problem of integration is reduced to

Solving an optimization problem → find x0

Determining the second derivative h′′(x) (or generally the Hessian
matrix Hf (x)) at the optimal position x0.

Instead of integration, an optimization problem must now be solved,
which is often much easier and faster.
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LAPLACE’S METHOD: EXAMPLE

Application example: Bayesian computation

Given:
x |λ ∼ Poisson(λ) (Likelihood)

λ ∼ Gamma(α, β) (Prior)

Wanted: Posterior density of the parameter λ given n observations
x =

(
x(1), x(2), ..., x(n)

)
Posterior
p(λ|x) =

Likelihood
p(x |λ) ·

Prior
π(λ)∫

p(x |λ) · π(λ) dλ

The density of the gamma distribution is given by πα,β(λ) =
1

βαΓ(α)
λα−1 exp(−λβ)
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LAPLACE’S METHOD: EXAMPLE / 2

To keep the calculations simple, we calculate the posterior density for
only one observation x .

The posterior density of λ given the observation x is (except for one
constant)

p(λ|x) ∝ λx+α−1 exp

(
− λ

1/β + 1

)
=: f (λ).

So to determine the posterior density p(λ|x) exactly, we search for the
normalization constant c, which ensures that

∫
c · f (λ) dλ = 1, hence

c ·
∫

f (λ) dλ = 1

c =
1∫

f (λ) dλ
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LAPLACE’S METHOD: EXAMPLE / 3

Goal: Approximation of
∫

f (λ) dλ with f (λ) = λx+α−1 exp
(
− λ

1/β+1

)
We calculate h(λ) = log f (λ)

h(λ) = log

(
λx+α−1 · exp(− λ

1/β + 1
)

)
= (x + α− 1) log λ− λ

1/β + 1

h′(λ) =
x + α− 1

λ
− 1

1/β + 1

h′′(λ) = −x + α− 1
λ2
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LAPLACE’S METHOD: EXAMPLE / 4

To approximate the integral using Laplace’s method, we need
λ0 := arg max f (λ) and h′′(λ0), where h(λ) := log(f (λ)).

The maximum of f (λ) is the same as the maximum of h(λ) (easier to
calculate)

h′(λ) = 0
x + α− 1

λ
− 1

1/β + 1
= 0

λ0 =
x + α− 1
1/β + 1

and thus

h′′(λ0) = −(1/β + 1)2

x + α− 1
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LAPLACE’S METHOD: EXAMPLE / 5

We insert λ0 = x+α−1
1/β+1 and h′′(λ0) into the formula for Laplace’s

method and obtain

∫
f (λ)dλ ≈

√
− 2π

h′′(λ0)
· f (λ0)

=
√

2π ·
√

x + α− 1
1/β + 1

· f (λ0)

Hence, the normalization constant c can be approximated by

c =
1∫

f (λ)dλ
≈ 1√

2π

1/β + 1√
x + α− 1

· 1
f (λ0)
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LAPLACE’S METHOD: EXAMPLE / 6

When calculating posterior distributions, Laplace’s method provides a
good approximation if

The number n of observations is large

The posterior distributions are roughly symmetric
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