
Algorithms and Data Structures

Quadrature
Newton-Côtes

Learning goals
Polynomial interpolation

Newton-Côtes

Composite rule



QUADRATURE WITH POLYNOMIALS

Idea: Approximate f in [a, b] by polynomial interpolation of degree m

https://de.wikipedia.org/wiki/Simpsonregel

Approximation of the integral of f in [a, b] using a polynomial of degree m = 2. Three

grid points are needed.

© Algorithms and Data Structures – 1 / 19

https://de.wikipedia.org/wiki/Simpsonregel


POLYNOMIAL INTERPOLATION

Find: Polynomial interpolation pm(x) =
∑m

i=0 aix i of degree m

Required: Evaluation at m + 1 data points
(x0 = a, x1, ..., . . . , xm = b)
At these data points the function values of the polynomial and the
function f must be identical, i.e. pm(xk) = f (xk) for k = 0, 1, ...,m
or equivalently using the Vandermonde matrix1 x0 . . . xm

0

...
...

. . .
...

1 xm . . . xm
m


a0

...
am

 =

 f (x0)
...

f (xm)


Existence and uniqueness: If the matrix is regular, the system of
equations can be solved uniquely. The matrix is regular if the grid
points xk , k = 1, ...,m are pairwise distinct.

© Algorithms and Data Structures – 2 / 19



POLYNOMIAL INTERPOLATION / 2

The polynomial interpolation can be determined by the solution of the
equation system above. However, the effort is high (solution of the LES
is O(n3)).

The polynomial interpolation can also be defined by using Lagrange
polynomials:

Lim(x) =
m∏

j=0, j ̸=i

x − xj

xi − xj
, i = 0, 1, ...,m

The polynomial interpolation is:

pm(x) =
m∑

i=0

Lim(x)f (xi)

© Algorithms and Data Structures – 3 / 19



POLYNOMIAL INTERPOLATION / 3

With: Lim(xk) =
m∏

j=0, j ̸=i

xk − xj

xi − xj
=

{
1 if k = i

0 if k ̸= i

Example: Let m = 3 and we calculate Li3 for i = 2

L23(xk) =
3∏

j=0, j ̸=2

xk − xj

x2 − xj
=

xk − x0

x2 − x0
· xk − x1

x2 − x1
· xk − x3

x2 − x3

For k = i = 2 all factors are 1

L23(x2) =
x2 − x0

x2 − x0
· x2 − x1

x2 − x1
· x2 − x3

x2 − x3
= 1 · 1 · 1 = 1

and for k ̸= 2, e.g. k = 1, one factor is 0 and thus the whole product will be 0

L23(x1) =
x1 − x0

x2 − x0
· x1 − x1

x2 − x1︸ ︷︷ ︸
=0

·x1 − x3

x2 − x3
= 0

So the polynomial is actually the polynomial interpolation through (xk , f (xk))

pm(xk) =
m∑

i=0

Lim(xk)f (xi) = f (xk) for k = 0, 1, ..., m

© Algorithms and Data Structures – 4 / 19



NEWTON-CÔTES

Instead of f we now integrate the polynomial pm:

I(pm) =

∫ b

a
pm(x) dx =

∫ b

a

m∑
i=0

Lim(x)f (xi) dx

=
m∑

i=0

f (xi)

∫ b

a
Lim(x) dx︸ ︷︷ ︸
:=wim

So the integral of pm on [a, b] is defined by

I(pm) =
m∑

i=0

wimf (xi)

with weights wim =
∫ b

a Lim(x) dx .

© Algorithms and Data Structures – 5 / 19



NEWTON-CÔTES / 2

Using equidistant grid points, i.e. xi = a + i · h, i = 0, 1, ...,m with
h = b−a

m , the formula can be further simplified.

When calculating the weights, we use integration by substitution∫ φ(m)
φ(0) Lim(x)dx =

∫ m
0 Lim(φ(x)) · φ′(x) dx with φ(x) = x · h + a.

Since φ(0) = a and φ(m) = b, the following holds

wim =

∫ φ(m)

φ(0)
Lim(x) dx =

∫ m

0
Lim(x · h + a) · h dx =

∫ m

0

m∏
j=0, j ̸=i

x − j
i − j

· b − a
m

dx

In the last step the fact that xi = i · h + a was exploited

Lim(x · h + a) =
m∏

j=0, j ̸=i

x · h + a − xj

xi − xj
=

m∏
j=0, j ̸=i

x · h + a − (j · h + a)
i · h + a − (j · h + a)

=
m∏

j=0, j ̸=i

x − j
i − j

© Algorithms and Data Structures – 6 / 19



NEWTON-CÔTES / 3

The Newton-Côtes formula for equidistant grid points is given by

Qm(f ) =
∫ b

a
pm(x) dx = (b − a)

m∑
i=0

wimf (xi),

with weights

wim =
1
m

∫ m

0

m∏
j=0, j ̸=i

x − j
i − j

dx , for 0 ≤ i ≤ m.

For a given polynomial of degree m the weights have to be calculated
(or looked up) only once, and the formula can be generalized to all
possible intervals [a, b].

© Algorithms and Data Structures – 7 / 19



NEWTON-CÔTES / 4

Example: For m = 1, two grid points are needed → x0 = a, x1 = b.

Calculation of the weights for the integral [0, 1]:

w01 =

∫ 1

0

(
x − 1
0 − 1

)
dx =

∫ 1

0
(1 − x) dx =

1
2

w11 =

∫ 1

0

(
x − 0
1 − 0

)
dx =

∫ 1

0
x dx =

1
2

So the formula is given by

I(f ) ≈ I(p1) = (b − a) · (w01 · f (x0) + w11 · f (x1))

= (b − a) · f (a) + f (b)
2

© Algorithms and Data Structures – 8 / 19



NEWTON-CÔTES / 5

The approach is also called trapezoidal rule.

https://de.wikipedia.org/wiki/Trapezregel

Approximation of the integral of f on [a, b] using polynomials of degree m = 1

(trapezoidal rule).

© Algorithms and Data Structures – 9 / 19

https://de.wikipedia.org/wiki/Trapezregel


OPEN VS. CLOSED NEWTON-CÔTES

We distinguish between:

Closed Newton-Côtes formulas: interval margins a and b are used
as grid points for the polynomial interpolation. Usually equidistant
nodes are used as grid points, xi = a + i · h, i = 0, ...,m with
h = b−a

m

Open Newton-Côtes formulas: interval margins a and b are not
used as grid points for the polynomial interpolation. Usually
equidistant nodes xi = a + i · h, i = 1, ...,m + 1, h = b−a

m+2 are
used.

© Algorithms and Data Structures – 10 / 19



WEIGHTS OF THE NEWTON CÔTES

m type sampling points (∗) ωim

0 open 1
2 1 Riemann sum

1 closed 0, 1 1
2 ,

1
2 trapezoidal rule

2 closed 0, 1
2 , 1

1
6 ,

4
6 ,

1
6 Simpson’s rule

3 closed 0, 1
3 ,

2
3 , 1

1
8 ,

3
8 ,

3
8 ,

1
8 3/8-rule

4 closed 0, 1
4 ,

2
4 ,

3
4 , 1

7
90 ,

32
90 ,

12
90 ,

32
90 ,

7
90 Milne rule

...
...

...
...

(∗) The grid points are only valid for integration on [0, 1]. For general integration limits

the grid points are a + xi · (b − a).

© Algorithms and Data Structures – 11 / 19



NEWTON-CÔTES: QUADRATURE ERROR

The interpolation error can generally be represented by

f (x)− pm(x) =
1

(m + 1)!
f (m+1)(x(i)) ·

m∏
i=0

(x − xi),

for an intermediate point x(i) ∈ [a, b]. With this, the quadrature error
can be generally derived by

E(f ) =

∫ b

a
pm(x)− f (x) dx = − 1

(m + 1)!
f (m+1)(x(i))

∫ b

a

m∏
i=0

(x − xi) dx

Example: Trapezoidal rule

E(f ) =

∫ b

a
pm(x)− f (x) dx = −

∫ b

a

1
2!

f (2)(x(i))(x − a)(x − b) dx

= − f (2)(x(i))
2

∫ b

a
(x − a)(x − b) dx =

1
12

(b − a)3 · f (2)(x(i))

© Algorithms and Data Structures – 12 / 19



COMPOSITE RULE

Interpolation with a polynomial of higher degree allows for more
flexibility. However, the polynomial function oscillates stronger near the
interval boundaries (Runge’s phenomenon).

© Algorithms and Data Structures – 13 / 19



COMPOSITE RULE / 2

In addition, many Newton-Côtes formulas have negative weights for
degree ≥ 8, which entails the risk of cancellation.

Therefore, it is common to divide larger integration intervals [a, b] into n
sub-intervals and apply the Newton-Côtes formula with a lower
polynomial degree on each of these sub-intervals. Then, the individual
results for the sub-intervals are added up.

In numerical integration this is known as the composite rule.

© Algorithms and Data Structures – 14 / 19



COMPOSITE RULE / 3

Degree m = 1: f is approximated in the intervals [xi , xi+1] by linear
functions (trapezoidal rule)

© Algorithms and Data Structures – 15 / 19



COMPOSITE RULE / 4

Degree m = 2: f is approximated in the intervals [xi , xi+1] by quadratic
functions (Simpson’s rule)

© Algorithms and Data Structures – 16 / 19



COMPOSITE RULE / 5

Degree m = 3: f is approximated in the intervals [xi , xi+1] by
polynomials of degree 3

© Algorithms and Data Structures – 17 / 19



COMPOSITE RULE / 6

Degree m = 4: f is approximated in the intervals [xi , xi+1] by
polynomials of degree 4

© Algorithms and Data Structures – 18 / 19



CONCLUSION: NUMERICAL INTEGRATION

In practice, adaptive procedures are often used: the number of
sub-intervals to which the Newton-Côtes formulas are applied is
adaptively fine-tuned.

The composite Simpson’s rule no longer really corresponds to the
state-of-the-art, but is certainly performant.

There are better methods such as Gaussian quadrature or
Gauss–Kronrod quadrature formula (not further discussed here).

Impressive convergence rates of some procedures (in 1D), if f is
sufficiently smooth, otherwise possibly problematic.

In principle, the procedures discussed so far can also be
generalized to higher dimensions.

But: Computing effort increases exponentially with dimension d
(curse of dimensionality ).

© Algorithms and Data Structures – 19 / 19


