Algorithms and Data Structures

Quadrature
Introduction to Quadrature

Learning goals
@ Integration
@ Condition of integration
@ Discretization
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MOTIVATION: INTEGRALS IN STATISTICS

@ Expectation of a random variable x with density p that is
transformed by a function g:

Eplg(x)] = / o(x) - p(x) dx

@ Normalization constant in Bayes’ theorem:
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The values of the integrals are often not elementary computable and
must be calculated numerically on the computer.
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INTEGRATION

Goal: Calculation of

We constrain ourselves to the concept of the Riemann Integral, which
is defined by Riemann sums:

n—1

S(f): = Y (et — x)f(x")
k=0
where (xo = a, Xy, X2, ..., Xn—1, Xo = b) is a partition of the interval [a, b]
(7 € [xi, Xit1].

and x;
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INTEGRATION /2
X

https://en.wikipedia.org/wiki/Riemann_sum
Different methods for calculating Riemann sums.
Right (TL), left (BR), minimum (TR) and maximum (BL) method.
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INTEGRATION /3

A function is Riemann-integrable on [a, b], if the Riemann sums
approach a fixed number (the value of the integral) as the partitions get
finer, so the Riemann integral is the limit of the Riemann sums of a
function for any arbitrary partition.

The operator /(f), which assigns the value of the integral to an
integrable function, is

@ Linear, i.e. I(Af+ pug) = M(f) + pl(g)

@ Positive, i.e. I(f) > 0 for f(x) > 0 for all x € [a, b]
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INTEGRATION /4

The fundamental theorem of calculus states that the integral (in case of
its existence) can be calculated using the indefinite integral

I(f) = F(b) — F(a)

However, for many interesting functions f there is no elementarily
representable integral F and the direct analytical way is not possible.

Examples:

N

X

° f(x)=e 2
@ Posterior calculations in Bayesian Statistics
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NUMERICAL PROBLEM

Given:

@ Function f, can be evaluated anywhere (try to keep the number of
evaluations small)

@ Interval of integration [a, b]
@ Errorbounde > 0

Searched: Q(f) with |Q(f) — I(f)| < e |I(f)|

E(f) :=|Q(f) — I(f)] is referred to as Quadrature error.
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CONDITION OF INTEGRATION

Question: How much does the value of the integral change if we
integrate a slightly transformed function f 4+ Af instead of f?

1.004

0.759

0.004
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CONDITION OF INTEGRATION /2

The relative condition is defined by the condition number £, i.e. the
smallest x > 0, so that

[((f) — It + Af)| _ Afll
()] Ml

It holds:
[I(f) — I(f + AF)|

linearity

[I(f) — I(f) — I(Af)]
/ AF(x)dx g/ |AF(x)]ox

< b — a) max |Af(x
< (b—a)max |AM(X)|

— (b a)|Af.
= IE+A0 AN A e A
()] = <A mr = T
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CONDITION OF INTEGRATION /3

The condition number for the integration is therefore limited by

[[lloo
k= (b—a) 1>
|1(f)]
In general, quadrature - in contrast to numerical differentiation - is well
conditioned. However, the upper bound for the condition is large if
@ The function allows for large function values (large
[lloe = max f(x))
@ The absolute value of the integral is very small
If the problem is ill-conditioned, the result should be critically
questioned (regardless of the stability of the algorithm).
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CONDITION OF INTEGRATION /4

Example:
Oscillating functions: fx(x) = (2’”2”)” sin((2k + 1)7x)
The following holds: /(fx) = f01 fi(x)dx = 1 and || f||oo = (2'<42r1)7T and
hence (2K + 1)r
K= % — o0 fork — o0
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DISCRETIZATION

Discretization is a central concept of numerical mathematics and the
basis of many quadrature formulas. A continuous object (e.g. a
function) is divided into n "parts" to allow numerical evaluation and
implementation.

-

Discretization of a continuous function.
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ERROR ANALYSIS: DISCRETIZATION ERROR

Let x, be the numerical solution for the discretized object and x* the
exact solution.

Due to the discretization an error is made, the so-called truncation
error

X — X'
Of course, this error should disappear for n — oo, the number of grid

points in a discretization.

When using discretization, we are interested in how quickly the
truncation error disappears.
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CONVERGENCE RATES FOR DISCRETIZATION

Definition:
The solution of the discretized problem x, converges with order p
towards the solution of the continuous problem x* if there are constants
M > 0 and ng € IN, such that

|xp — x*| <M-n"P foralln> ng

or equivalently

|xn — x*| € O(n™P)

For p = 1 we speak of linear convergence, for p = 2 of quadratic
convergence.
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