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MOTIVATION: INTEGRALS IN STATISTICS

Expectation of a random variable x with density p that is
transformed by a function g:

Ep[g(x)] =
∫

g(x) · p(x) dx

Normalization constant in Bayes’ theorem:

Posterior
p(θ|x) =

Likelihood
p(x |θ) ·

Prior
π(θ)∫

p(x |θ) · π(θ) dθ

The values of the integrals are often not elementary computable and
must be calculated numerically on the computer.
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INTEGRATION

Goal: Calculation of

I(f ) :=
∫ b

a
f (x)dx

We constrain ourselves to the concept of the Riemann Integral, which
is defined by Riemann sums:

S(f ) : =
n−1∑
k=0

(xk+1 − xk)f (x
(i)
i )

where (x0 = a, x1, x2, ..., xn−1, xn = b) is a partition of the interval [a, b]
and x(i)i ∈ [xi , xi+1].
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INTEGRATION / 2

https://en.wikipedia.org/wiki/Riemann_sum

Different methods for calculating Riemann sums.
Right (TL), left (BR), minimum (TR) and maximum (BL) method.
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INTEGRATION / 3

A function is Riemann-integrable on [a, b], if the Riemann sums
approach a fixed number (the value of the integral) as the partitions get
finer, so the Riemann integral is the limit of the Riemann sums of a
function for any arbitrary partition.

The operator I(f ), which assigns the value of the integral to an
integrable function, is

Linear, i.e. I(λf + µg) = λI(f ) + µI(g)

Positive, i.e. I(f ) ≥ 0 for f (x) ≥ 0 for all x ∈ [a, b]
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INTEGRATION / 4

The fundamental theorem of calculus states that the integral (in case of
its existence) can be calculated using the indefinite integral

I(f ) = F(b)− F(a)

However, for many interesting functions f there is no elementarily
representable integral F and the direct analytical way is not possible.

Examples:

f (x) = e− x2

2

Posterior calculations in Bayesian Statistics
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NUMERICAL PROBLEM

Given:

Function f , can be evaluated anywhere (try to keep the number of
evaluations small)

Interval of integration [a, b]

Error bound ϵ > 0

Searched: Q(f ) with |Q(f )− I(f )| ≤ ϵ · |I(f )|

E(f ) := |Q(f )− I(f )| is referred to as Quadrature error.
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CONDITION OF INTEGRATION

Question: How much does the value of the integral change if we
integrate a slightly transformed function f +∆f instead of f?
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CONDITION OF INTEGRATION / 2

The relative condition is defined by the condition number κ, i.e. the
smallest κ ≥ 0, so that

|I(f )− I(f +∆f )|
|I(f )|

≤ κ
∥∆f∥∞
∥f∥∞

It holds:

|I(f )− I(f +∆f )| linearity
= |I(f )− I(f )− I(∆f )|

=

∣∣∣∣∫ b

a
∆f (x)dx

∣∣∣∣ ≤ ∫ b

a
|∆f (x)|dx

≤ (b − a) max
x∈[a,b]

|∆f (x)|

= (b − a)∥∆f∥∞

|I(f )− I(f +∆f )|
|I(f )| =

|I(∆f )|
|I(f )| ≤ (b − a)

∥∆f∥∞
|I(f )| = (b − a)

∥f∥∞
|I(f )|

∥∆f∥∞
∥f∥∞
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CONDITION OF INTEGRATION / 3

The condition number for the integration is therefore limited by

κ = (b − a)
∥f∥∞
|I(f )|

In general, quadrature - in contrast to numerical differentiation - is well
conditioned. However, the upper bound for the condition is large if

The function allows for large function values (large
∥f∥∞ = maxx f (x))

The absolute value of the integral is very small

If the problem is ill-conditioned, the result should be critically
questioned (regardless of the stability of the algorithm).
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CONDITION OF INTEGRATION / 4

Example:
Oscillating functions: fk(x) =

(2k+1)π
2 sin((2k + 1)πx)

The following holds: I(fk) =
∫ 1

0 fk(x)dx = 1 and ∥fk∥∞ = (2k+1)π
2 and

hence
κ =

(2k + 1)π
2

→ ∞ for k → ∞
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DISCRETIZATION

Discretization is a central concept of numerical mathematics and the
basis of many quadrature formulas. A continuous object (e.g. a
function) is divided into n "parts" to allow numerical evaluation and
implementation.

Discretization of a continuous function.
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ERROR ANALYSIS: DISCRETIZATION ERROR

Let xn be the numerical solution for the discretized object and x∗ the
exact solution.

Due to the discretization an error is made, the so-called truncation
error

|xn − x∗|

Of course, this error should disappear for n → ∞, the number of grid
points in a discretization.

When using discretization, we are interested in how quickly the
truncation error disappears.
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CONVERGENCE RATES FOR DISCRETIZATION

Definition:
The solution of the discretized problem xn converges with order p
towards the solution of the continuous problem x∗ if there are constants
M > 0 and n0 ∈ N, such that

|xn − x∗| ≤ M · n−p for all n > n0

or equivalently

|xn − x∗| ∈ O(n−p)

For p = 1 we speak of linear convergence, for p = 2 of quadratic
convergence.

© Algorithms and Data Structures – 13 / 13


