Algorithms and Data Structures

Big O Misconceptions of Big O, further Landau Symbols & Discussion

Learning goals

- Misconceptions of Big O
- Alternative notations
- Complexity vs. empirical runtime

MISCONCEPTIONS OF BIG O

- Misconception 1: f = O(g): The sign of equality means equality
 - Left: Function
 - $\bullet~\mbox{Right: Function class} \rightarrow \mbox{equality makes no sense}$
 - Formally correct: $f \in \mathcal{O}(g)$
- Misconception 2: Big O means that functions "have approximately the same" runtime behaviour
 - $f \in \mathcal{O}(1)$ implies by definition also $f \in \mathcal{O}(n)$
 - *f* ∈ O(*g*) only means that *f* does not grow faster than *g*, but not that *f* grows as fast as *g*

× × ×

MISCONCEPTIONS OF BIG O / 2

- Misconception 3: Big O describes the runtime of an algorithm
 - Big O describes how well an algorithm scales
 - Big O is not an absolute measure of runtime an algorithm can have a shorter runtime for a small instance, but scale much worse
- Misconception 4: Big O is always the worst case
 - The notation is often used to describe the worst case
 - However Big O does not imply the worst case
 - Also best case and average case can be considered

× × ×

ALTERNATIVE NOTATIONS

In addition to Big O notation another Landau symbol is used in mathematics: The little o.

Informally f(x) = o(g(x)) means that *f* grows much slower than *g*.

Formal definition:

× × ×

 $f(x) \in o(g(x))$

if and only if for each M > 0 there exists x_0 such that

 $|f(x)| < M \cdot |g(x)|$ for all $x > x_0$.

ALTERNATIVE NOTATIONS / 2

Further we define for $a \in \mathbb{R}$

$$f(x) \in o(g(x))$$
 for $x \to a$

only if for every M > 0 there is a $d \in \mathbb{R}$ such that for all x we have |x - a| < d $|f(x)| < M \cdot |g(x)|$

For $g(x) \neq 0$, it is equivalent to

$$\lim_{x\to a}\left|\frac{f(x)}{g(x)}\right|=0$$

× × 0 × × ×

ALTERNATIVE NOTATIONS / 3

Overview: Landau symbols

	Notation	Definition	Analog to
	$f(n) \in \mathcal{O}(g(n))$	see above	\leq
	$f(n) \in o(g(n))$	see above	<
	$f(n) \in \Omega(g(n))$	$g(n)\in \mathcal{O}(f(n))$	\geq
	$f(n) \in \omega(g(n))$	$g(n)\in o(f(n))$	>
	$f(n)\in \Theta(g(n))$	$f(n)\in\mathcal{O}(g(n))$ and $g(n)\in\mathcal{O}(f(n))$	=
k · f(n) running time k · f(n)			$k_2 \cdot n$ running time $k_1 \cdot n$

Left panel O(f(n)), middle panel $\Omega(f(n))$ and right panel $\Theta(f(n))$

 $\times \times$

COMPLEXITY VS. EMPIRICAL RUNTIME

In this chapter we dealt with the complexity of algorithms:

- How does an algorithm **scale** with regards to the required resources?
- What happens when the problem gets bigger?
- What is the theoretical runtime complexity of an algorithm? (Knowledge / Estimation / Evidence)
 - Bubble sort has a worst-case runtime of $\mathcal{O}(n^2)$
 - Matrix multiplication of two regular $n \times n$ matrices has a runtime complexity of $\mathcal{O}(n^3)$
 - The Traveling Salesman Problem is NP-complete
 - ...
- It is often helpful to test the complexity of an algorithm empirically!

× × ×

COMPLEXITY VS. EMPIRICAL RUNTIME / 2

But: How many resources does my algorithm really need?

- ightarrow empirical runtime analysis:
 - Measurement of the runtime of an implementation on a given machine
 - How much time (or memory etc.) is needed when the code is executed?
 - $\bullet \ \rightarrow$ Depends on the machine, the compiler/interpreter, dependencies, and the code itself
 - The empirical runtime can be measured for a fixed input quantity, but can also be systematically analyzed for different input quantities / problem instances
 - When computing on a cluster, the cloud, or a machine on which several people are computing, the empirical run-time is usually influenced by the actions of other users

× 0 0 × × ×