
Algorithms and Data Structures

Big O
Properties & Examples of Big O

Learning goals
Properties of Big O

Know how to determine the runtime

Complexity classes

PROPERTIES

Be f , g, h, fi , gi : X → R, c ≥ 0.
1 Constants: f ∈ O(cg) is equivalent to f ∈ O(g). In particular:

f ∈ O(c) is equivalent to f ∈ O(1) (Constant runtime)
2 Transitivity: If f ∈ O(g) and g ∈ O(h) then f ∈ O(h)
3 Products: f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1f2 ∈ O(g1g2)

4 Sums: f1 ∈ O(g1) and f2 ∈ O(g2) ⇒ f1 + f2 ∈ O(|g1|+ |g2|)

© Algorithms and Data Structures – 1 / 32

PROPERTIES / 2

Particularly important for determining the runtime of an algorithm:

If a function is the sum of several functions, the fastest growing
function determines the order of the sum of functions.

If f is a product of several factors, constants can be neglected.

Example 1:
The complexity of the function f (n) = n log n + 3 · n3 can be
determined quickly: the fastest growing function is 3 · n3, multiplicative
constants can be neglected. So

f (n) ∈ O(n3)

© Algorithms and Data Structures – 2 / 32

OTHER EXAMPLES

Example 2:

f (n) = 10 log(n) + 5(log(n))3 + 7n + 3n2 + 6n3

The fastest growing summand is 6n3

Constants can be neglected

⇒ f (n) ∈ O(n3)

Example 3:

g(n) = n2 · exp(n)

⇒ g(n) ∈ O(n2 · exp(n))

© Algorithms and Data Structures – 3 / 32

DETERMINING THE RUNTIME

How fast a function runs depends on the different statements that are
executed.

total_time = time(statement1)+time(statement2)+. . .+time(statementk)

If each statement is a simple base operation, the time for each
statement is constant and the total runtime is also constant: O(1).

© Algorithms and Data Structures – 4 / 32

DETERMINING THE RUNTIME / 2

If-else

if (cond) {

block1 # sequence of statements

} else {

block2 # sequence of statements

}

Either block1 or block2 is executed

The worst case is the slower one of the two options:

max(time(block1), time(block2))

© Algorithms and Data Structures – 5 / 32

DETERMINING THE RUNTIME / 3

Loops

for (i in 1:n) {

block # sequence of statements

}

We consider n as part of our input size (e.g., number of elements
in a list).

The loop is executed n times.

If we assume that the statements are O(1), then the total runtime
is: n · O(1) = O(n).

© Algorithms and Data Structures – 6 / 32

DETERMINING THE RUNTIME / 4

Nested loops

for (i in 1:n) {

for (j in 1:m) {

block # sequence of statements

}

}

Let m, n be part of our input size (e.g. number of rows/columns of
a matrix).

The outer loop is executed n times.

At each iteration of i the inner loop is executed m times.

Thus the statements are executed n · m times in total and the
complexity is O(n · m).

© Algorithms and Data Structures – 7 / 32

DETERMINING THE RUNTIME / 5

Statements with function calls

When a statement calls a function, the complexity of the function
must be included in the calculation.

This also holds for loops:

for (i in 1:n) {

g(i)

}

If g ∈ O(n), the runtime of the loop is O(n2).

© Algorithms and Data Structures – 8 / 32

EXAMPLES (CONTINUED)

Example 4: Bubble sort algorithm

The bubble sort is an algorithm that sorts the elements of a (numeric)
vector of length n in ascending order.

for (k in n:2) {

for (i in 1:(k - 1)) {

if (x[i] > x[i + 1]) {

swap elements

s = x[i]

x[i] = x[i + 1]

x[i + 1] = s

}

}

}

http://teerexie.blogspot.com/

© Algorithms and Data Structures – 9 / 32

http://teerexie.blogspot.com/

EXAMPLES (CONTINUED) / 2

The inner loop depends on the outer loop and is executed
i = n − 1, then i = n − 2, ... and finally i = 1 times.

According to the sum of natural numbers (Carl Friedrich Gauss)
the inner loop is executed

∑n−1
i=1 i = (n−1)n

2 = n2−n
2 times.

The operations in the if statement are operations with constant
runtime.

The total runtime is therefore

n2 − n
2

· O(1) = O
(

n2 − n
2

)
= O(n2)

© Algorithms and Data Structures – 10 / 32

EXAMPLES (CONTINUED) / 3

Example 5: The multiplication of two matrices A ∈ Rm×n,B ∈ Rn×p

has a runtime of O(mpn):

m · p scalar products

For each scalar product: n multiplications and n − 1 additions

→ m · p · (n + (n − 1)) operations

https://commons.wikimedia.org/wiki/File:

Matrix_multiplication_diagram_2.svg

© Algorithms and Data Structures – 11 / 32

https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg
https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg

EXAMPLES (CONTINUED) / 4

The Coppersmith-Winograd algorithm allows matrix multiplication of two
n × n matrices in O(n2.373). A lower bound for the complexity of the
matrix multiplication is n2, since each of the n2 elements of the output
matrix must be generated.

More about Computational complexity of mathematical operations

© Algorithms and Data Structures – 12 / 32

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

EXAMPLES (CONTINUED) / 5

multiplyMatrices = function(n) {

A = matrix(runif(n^2), n, n)

B = matrix(runif(n^2), n, n)

return(A %*% B)

}

0

50000

100000

150000

200000

250 500 750 1000
n

µ
se

co
nd

s

© Algorithms and Data Structures – 13 / 32

EXAMPLES (CONTINUED) / 6

If possible: Avoid matrix multiplication!

n = 1000

A = matrix(runif(n), n, n)

B = matrix(runif(n), n, n)

y = c(runif(n))

system.time(A %*% B %*% y)

user system elapsed

0.72 0.00 0.73

system.time(A %*% (B %*% y))

user system elapsed

0.00 0.00 0.03

© Algorithms and Data Structures – 14 / 32

EXAMPLES (CONTINUED) / 7

n = 1000

A = matrix(rnorm(n), n, n) + diag(1, nrow = n)

b = rnorm(n)

solving Ax = b

system.time(solve(A) %*% b) # A^{-1} %*% b

user system elapsed

0.96 0.01 0.05

system.time(solve(A, b)) # direct solution of the LES

user system elapsed

0.0 0.2 0.0

© Algorithms and Data Structures – 15 / 32

EXAMPLES (CONTINUED) / 8

Example 6:
In mathematics one is interested in the estimation of error terms for
approximations.
Using Taylor’s theorem a m-times differentiable function f at point
x = x0 can be defined as follows:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′(x0)

2!
(x − x0)

2 + ...+
f (m)(x0)

m!
(x − x0)

m

+ O(|x − x0|m+1), x → x0.

The more x approaches x0, the better the Taylor polynomial
approximates f at point x .

The higher the order m of the Taylor polynomial, the better the
approximation for x → x0.

© Algorithms and Data Structures – 16 / 32

EXAMPLES (CONTINUED) / 9

For example, consider the exponential function as Taylor series

exp(x) =
∞∑

i=0

x i

i!

exp(x) approximated at the point x = 0

exp(x) = 1 + x +
x2

2!
+O(x3) for x → 0

In this way, it becomes clear that the error does not become greater
than M · x3 when x approaches 0.

© Algorithms and Data Structures – 17 / 32

EXAMPLES (CONTINUED) / 10

Example 7:
The complexity of the binary search is visualized by a tree
representation.

For an array of length n, the search tree has a height of log2(n). After a
maximum of log2(n) comparisons, the searched element is found. The
complexity of the binary search is O(log n).

© Algorithms and Data Structures – 18 / 32

EXAMPLES (CONTINUED) / 11

Example 8:
The Fibonacci sequence is a series of numbers where each number is the sum of the
two preceding ones, starting with 1. The sequence thus begins as:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...

fib = function(n) {

if (n <= 2L)

return(1L)

return(fib(n - 2) + fib(n - 1))

}

fib_table = microbenchmark(fib(5), fib(10), fib(20), fib(21), times = 500L)

print(xtable(summary(fib_table), digits = 0), booktabs=TRUE,

caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")

expr min lq mean median uq max neval

1 fib(5) 2 2 99 3 4 47817 500
2 fib(10) 27 29 32 30 33 88 500
3 fib(20) 3611 3733 4164 3842 4052 10118 500
4 fib(21) 5861 6047 6926 6227 6476 49636 500

© Algorithms and Data Structures – 19 / 32

EXAMPLES (CONTINUED) / 12

Fibonacci(n) ∈ O(2n) (exponential runtime)

Informal proof:

Fibonacci(n) = Fibonacci(n - 1)︸ ︷︷ ︸
T (n−1)

+︸︷︷︸
O(1)

Fibonacci(n - 2)︸ ︷︷ ︸
T (n−2)

This results in a runtime of T (n) = T (n − 1) + T (n − 2) +O(1) for n > 1.

The function is executed twice in each step.

T (n) = T (n − 1) + T (n − 2)

= T (n − 2) + T (n − 3) + T (n − 3) + T (n − 4) = . . .

© Algorithms and Data Structures – 20 / 32

EXAMPLES (CONTINUED) / 13

By simply "counting" the nodes of this recursion tree you can determine the exact
number of operations.
→ Worst case runtime O(2n).

© Algorithms and Data Structures – 21 / 32

EXAMPLES (CONTINUED) / 14

Variations of Fibonacci(n): Iterative

fib2 = function(n) {

a = 0; b = 1

if (n <= 2)

return(1)

for (i in seq_len(n-1L)) {

tmp = b; b = a + b; a = tmp

}

return(b)

}

This is O(n) (if we, incorrectly, assume addition is constant in n).

© Algorithms and Data Structures – 22 / 32

EXAMPLES (CONTINUED) / 15

fib2_table = microbenchmark(fib2(10), fib2(20), fib2(40), fib2(80),

fib2(160), times = 5000L)

print(xtable(summary(fib2_table), digits = 0), booktabs=TRUE,

caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")

expr min lq mean median uq max neval

1 fib2(10) 1 1 2 1 2 37 5000
2 fib2(20) 1 2 2 2 2 24 5000
3 fib2(40) 2 2 4 2 3 6755 5000
4 fib2(80) 3 3 4 3 4 26 5000
5 fib2(160) 5 5 7 6 7 49 5000

Time measurement becomes imprecise since “for loops” are not that slow in R due to
JIT compilation. Hence we are using doubles here as a lazy trick to generate large
fibonacci numbers. An alternative to generate large integers would be to use the int64
package.

© Algorithms and Data Structures – 23 / 32

EXAMPLES (CONTINUED) / 16

Variations of Fibonacci(n): In C

library(inline)

fib3 = cfunction(signature(n="integer"), language="C",

convention=".Call", body = '

int nn = INTEGER(n)[0];

SEXP res;

PROTECT(res = allocVector(INTSXP, 1));

INTEGER(res)[0] = 1;

int a = 0; int b = 1;

for (int i=0; i<nn-1; i++) {

int tmp = b;

b = a + b;

a = tmp;

}

INTEGER(res)[0] = b;

UNPROTECT(1);

return res;

')

See how ugly the C interface is?

© Algorithms and Data Structures – 24 / 32

EXAMPLES (CONTINUED) / 17

fib3_table = microbenchmark(fib3(20L), fib3(40L),times = 5000L)

print(xtable(summary(fib3_table), digits = 0), booktabs=TRUE,

caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")

expr min lq mean median uq max neval

1 fib3(20L) 300 400 465 400 500 13900 5000
2 fib3(40L) 300 400 479 400 500 21200 5000

This is both O(n) ... See the difference? Actually, you do not see anything as the
function is so fast, we would need to calculate with bigints to really see the O(n)!

© Algorithms and Data Structures – 25 / 32

EXAMPLES (CONTINUED) / 18

Variations of Fibonacci(n): C++-version

library(Rcpp)

fib4 = cppFunction('int fibonacci(const int x) {

if (x <= 2) return(1);

return (fibonacci(x - 1)) + fibonacci(x - 2);

}

')

Much nicer C++-Interface with Rcpp.

© Algorithms and Data Structures – 26 / 32

EXAMPLES (CONTINUED) / 19

Variations of Fibonacci(n): Matrix power-exponentiation

library(expm)

fib5 = function(n) {

A = matrix(c(1, 1, 1, 0), 2, 2)

B = A%^%n

B[1, 2]

}

How does fib5() work?

A =

(
1 1
1 0

)
A2 =

(
2 1
1 1

)
A3 =

(
3 2
2 1

)
A4 =

(
5 3
3 2

)
A5 =

(
8 5
5 3

)
A6 =

(
13 8
8 5

)
A7 =

(
21 13
13 8

)
. . .

© Algorithms and Data Structures – 27 / 32

EXAMPLES (CONTINUED) / 20

Matrix power-exponentiation
What does A %^% n do?
Computes the n-th power of a matrix corresponding to n − 1 matrix multiplications (A^n
only computes element wise powers).
The algorithm uses O(log2(k)) matrix multiplications.

Exponentiation by squaring:

xn =

{
x(x2)

n−1
2 if n is odd

(x2)
n
2 if n is even

© Algorithms and Data Structures – 28 / 32

EXAMPLES (CONTINUED) / 21

Exponentiation by squaring
Implemented as a recursive algorithm:

exp.by.squaring = function(x, n) {

if(n<0) {

return(exp.by.squaring(1 / x, -n))

} else if(n==0){

return(1)

} else if(n==1){

return(x)

} else if(n%%2 == 0){

return(exp.by.squaring(x^2, n/2))

} else {

return(x * exp.by.squaring(x^2, (n-1)/2))

}

}

exp.by.squaring(2,5)

[1] 32

© Algorithms and Data Structures – 29 / 32

EXAMPLES (CONTINUED) / 22

Example 9: The Traveling Salesman Problem (TSP) is the problem of planning a
route through all locations in such a way that

The entire route is as short as possible,

The first location is equal to the last location.

Left: Route through places in Germany
(https://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden)
Right: Weighted graph (https://www.chegg.com/)

© Algorithms and Data Structures – 30 / 32

https://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden
https://www.chegg.com/

EXAMPLES (CONTINUED) / 23

Exact algorithms with long runtime exist

Brute force search (Calculate lengths of all possible round trips and choose
shortest): O(n!)

Dynamic Programming (Held-Karp algorithm): O(n22n)

and heuristic algorithms with shorter runtime, which do not guarantee an optimal
solution, e.g.

Nearest-Neighbor heuristics: O(n2)

The TSP problem is NP-complete.

© Algorithms and Data Structures – 31 / 32

COMPLEXITY CLASSES

In theoretical computer science, problems are divided into complexity
classes. For an input size n a distinction is made between

P: Problems solvable in polynomial runtime (O(nk), k ≥ 1)

NP (Non-deterministic Polynomial time): Problems from P and
problems that cannot be solved in polynomial time;
NP problems can only be solved with a non-deterministic turing
machine in an acceptable time (hence the name)

NP-complete: All problems from NP can be traced back to this
problem

It has not yet been proven that P ̸= NP holds.

© Algorithms and Data Structures – 32 / 32

