Algorithms and Data Structures

Big O Properties & Examples of Big O

X X

Learning goals

- Properties of Big O
- Know how to determine the runtime
- Complexity classes

PROPERTIES

Be $f, g, h, f_i, g_i: X \to \mathbb{R}, c \geq 0$.

- **1** Constants: $f \in \mathcal{O}(cq)$ is equivalent to $f \in \mathcal{O}(q)$. In particular: *f* \in $\mathcal{O}(c)$ is equivalent to *f* \in $\mathcal{O}(1)$ (Constant runtime)
- **2** Transitivity: If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$ then $f \in \mathcal{O}(h)$
- **3** Products: $f_1 \in \mathcal{O}(g_1)$ and $f_2 \in \mathcal{O}(g_2) \Rightarrow f_1 f_2 \in \mathcal{O}(g_1 g_2)$
- **4** Sums: $f_1 \in \mathcal{O}(g_1)$ and $f_2 \in \mathcal{O}(g_2) \Rightarrow f_1 + f_2 \in \mathcal{O}(|g_1| + |g_2|)$

PROPERTIES / 2

Particularly important for determining the runtime of an algorithm:

- If a function is the sum of several functions, the fastest growing function determines the order of the sum of functions.
- **•** If *f* is a product of several factors, constants can be neglected.

Example 1:

The complexity of the function $f(n) = n \log n + 3 \cdot n^3$ can be determined quickly: the fastest growing function is 3 · *n* 3 , multiplicative constants can be neglected. So

$$
f(n)\in\mathcal{O}(n^3)
$$

OTHER EXAMPLES

Example 2:

$$
f(n) = 10 \log(n) + 5(\log(n))^3 + 7n + 3n^2 + 6n^3
$$

- The fastest growing summand is 6*n* 3
- Constants can be neglected
- \Rightarrow *f*(*n*) \in *O*(*n*³)

Example 3:

$$
g(n) = n^2 \cdot \exp(n)
$$

$$
\bullet\Rightarrow g(n)\in\mathcal{O}(n^2\cdot\exp(n))
$$

X X X

How fast a function runs depends on the different statements that are executed.

 $total_time = time(s \text{tatement}_1) + time(s \text{tatement}_2) + ... + time(s \text{tatement}_k)$

If each statement is a simple base operation, the time for each statement is constant and the total runtime is also constant: $\mathcal{O}(1)$. (X

If-else

```
if (cond) {
 block1 # sequence of statements
} else {
  block2 # sequence of statements
}
```
- Either block1 **or** block2 is executed
- The worst case is the slower one of the two options:

max(*time*(*block*1), *time*(*block*2))

X \times \times

Loops

```
for (i in 1:n) {
  block # sequence of statements
}
```
- We consider *n* as part of our input size (e.g., number of elements in a list).
- The loop is executed *n* times.
- \bullet If we assume that the statements are $\mathcal{O}(1)$, then the total runtime is: $n \cdot \mathcal{O}(1) = \mathcal{O}(n)$.

XX

Nested loops

```
for (i in 1:n) {
  for (j in 1:m) {
    block # sequence of statements
  }
}
```


- Let *m*, *n* be part of our input size (e.g. number of rows/columns of a matrix).
- The outer loop is executed *n* times.
- At each iteration of *i* the inner loop is executed *m* times.
- Thus the statements are executed *n* · *m* times in total and the complexity is O(*n* · *m*).

Statements with function calls

- When a statement calls a function, the complexity of the function must be included in the calculation.
- This also holds for loops:

```
for (i in 1:n) {
  g(i)
}
```

```
If g \in \mathcal{O}(n), the runtime of the loop is \mathcal{O}(n^2).
```
X X X

Example 4: Bubble sort algorithm

The bubble sort is an algorithm that sorts the elements of a (numeric) vector of length *n* in ascending order.

```
for (k \in n:2) {
  for (i \text{ in } 1: (k - 1)) {
    if (x[i] > x[i + 1]) {
      # swap elements
       s = x[i]x[i] = x[i + 1]x[i + 1] = s}
  }
}
```


<http://teerexie.blogspot.com/>

X \times \times

- The inner loop depends on the outer loop and is executed $i = n - 1$, then $i = n - 2$, ... and finally $i = 1$ times.
- According to the sum of natural numbers (Carl Friedrich Gauss) the inner loop is executed $\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} = \frac{n^2-n}{2}$ $\frac{-n}{2}$ times.
- The operations in the if statement are operations with constant runtime.

The total runtime is therefore

$$
\frac{n^2-n}{2}\cdot \mathcal{O}(1)=\mathcal{O}\left(\frac{n^2-n}{2}\right)=\mathcal{O}(n^2)
$$

Example 5: The multiplication of two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ has a runtime of O(*mpn*):

- \bullet *m* \cdot *p* scalar products
- For each scalar product: *n* multiplications and *n* − 1 additions
- $\bullet \rightarrow m \cdot p \cdot (n + (n 1))$ operations

[https://commons.wikimedia.org/wiki/File:](https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg)

[Matrix_multiplication_diagram_2.svg](https://commons.wikimedia.org/wiki/File:Matrix_multiplication_diagram_2.svg)

 $\overline{\mathbf{C}}$

The Coppersmith-Winograd algorithm allows matrix multiplication of two $n \times n$ matrices in $\mathcal{O}(n^{2.373})$. A lower bound for the complexity of the matrix multiplication is n^2 , since each of the n^2 elements of the output matrix must be generated.

 \times \times

More about [Computational complexity of mathematical operations](https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations)

```
multiplyMatrices = function(n) {
 A = matrix(runit(n^2), n, n)B = matrix(runit(n^2), n, n)return(A %*% B)
```
X X X

}

If possible: Avoid matrix multiplication!

```
n = 1000A = matrix(runit(n), n, n)B = matrix(runit(n), n, n)y = c(runit(n))
```

```
system.time(A %*% B %*% y)
## user system elapsed
## 0.72 0.00 0.73
```

```
system.time(A \frac{9}{2} \frac{1}{2} \frac{1}{2## user system elapsed
## 0.00 0.00 0.03
```
 \times \times

```
n = 1000A = matrix(rnorm(n), n, n) + diag(1, nrow = n)b = rnorm(n)
```

```
# solving Ax = b
system.time(solve(A) \frac{9}{2} *\frac{9}{2} b) # A^{-1} \frac{9}{2} *\frac{9}{2} b
## user system elapsed
## 0.96 0.01 0.05
```

```
system.time(solve(A, b)) # direct solution of the LES
## user system elapsed
## 0.0 0.2 0.0
```
DХ $\times\overline{\times}$

Example 6:

In mathematics one is interested in the estimation of error terms for approximations.

Using Taylor's theorem a *m*-times differentiable function *f* at point $x = x_0$ can be defined as follows:

$$
f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f'(x_0)}{2!}(x - x_0)^2 + ... + \frac{f^{(m)}(x_0)}{m!}(x - x_0)^m
$$

+ $\mathcal{O}(|x - x_0|^{m+1}), \quad x \to x_0.$

- \bullet The more *x* approaches x_0 , the better the Taylor polynomial approximates *f* at point *x*.
- The higher the order *m* of the Taylor polynomial, the better the approximation for $x \to x_0$.

X X

For example, consider the exponential function as **Taylor series**

$$
\exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}
$$

 $\exp(x)$ approximated at the point $x = 0$

$$
exp(x) = 1 + x + \frac{x^2}{2!} + \mathcal{O}(x^3)
$$
 for $x \to 0$

In this way, it becomes clear that the error does not become greater than $M \cdot x^3$ when *x* approaches 0.

Example 7:

The complexity of the **binary search** is visualized by a tree representation.

x x

For an array of length *n*, the search tree has a height of log₂(n). After a maximum of $\log_2(n)$ comparisons, the searched element is found. The complexity of the binary search is O(log *n*).

Example 8:

The **Fibonacci sequence** is a series of numbers where each number is the sum of the two preceding ones, starting with 1. The sequence thus begins as: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

```
fib = function(n) {
  if (n \leq 2L)return(1L)
  return(fib(n - 2) + fib(n - 1))}
```

```
fib_table = microbenchmark(fib(5), fib(10), fib(20), fib(21), times = 500L)
print(xtable(summary(fib_table), digits = 0), booktabs=TRUE,
    caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")
```


 \times \times

Fibonacci(n) \in $\mathcal{O}(2^n)$ (exponential runtime)

Informal proof:

Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

$$
\underbrace{\qquad \qquad \text{Fibonacci}(n - 2)}_{\text{T}(n-2)}
$$

This results in a runtime of $T(n) = T(n-1) + T(n-2) + O(1)$ for $n > 1$.

The function is executed twice in each step.

$$
T(n) = T(n-1) + T(n-2)
$$

= $T(n-2) + T(n-3) + T(n-3) + T(n-4) = ...$

By simply "counting" the nodes of this recursion tree you can determine the exact number of operations.

 \rightarrow Worst case runtime $\mathcal{O}(2^n)$.

Variations of Fibonacci(n): Iterative

```
fib2 = function(n) {
  a = 0; b = 1if (n \leq 2)return(1)
  for (i in seq_len(n-1L)) {
    tmp = b; b = a + b; a = tmp}
  return(b)
}
```
This is $\mathcal{O}(n)$ (if we, incorrectly, assume addition is constant in n).

X $\times\overline{\times}$

fib2_table = microbenchmark(fib2(10), fib2(20), fib2(40), fib2(80), $fib2(160)$, times = $5000L$)

```
print(xtable(summary(fib2_table), digits = 0), booktabs=TRUE,
    caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")
```


Time measurement becomes imprecise since "for loops" are not that slow in R due to JIT compilation. Hence we are using doubles here as a lazy trick to generate large fibonacci numbers. An alternative to generate large integers would be to use the int64 package.

 \times \times

Variations of Fibonacci(n): In C

```
library(inline)
fib3 = cfunction(signature(n="integer"), language="C",
         convention=".Call", body = 'int nn = INTEGR(n)[0];SEXP res;
         PROTECT(res = allocVector(INTSXP, 1));
         INTEGER(res)[0] = 1;
         int a = 0; int b = 1;
         for (int i=0; i <nn-1; i++) {
         int tmp = b:
         b = a + b;
         a = \text{tmp};
         }
         INTEGR(res)[0] = b;
         UNPROTECT(1);
         return res;
         ')
```
X $\overline{\mathbf{x}\ \mathbf{x}}$

See how ugly the C interface is?

fib3_table = microbenchmark(fib3(20L), fib3(40L),times = 5000L)

print(xtable(summary(fib3_table), digits = 0), booktabs=TRUE, caption.placement="top", size="\\fontsize{8pt}{9pt}\\selectfont")

This is both $\mathcal{O}(n)$... See the difference? Actually, you do not see anything as the function is so fast, we would need to calculate with bigints to really see the $\mathcal{O}(n)!$ \times \times

Variations of Fibonacci(n): C++**-version**

```
library(Rcpp)
fib4 = cppFunction('int fibonacci(const int x) {
         if (x \leq 2) return(1);
         return (fibonacci(x - 1)) + fibonacci(x - 2);
}
'
```
 \times \times

Much nicer C++-Interface with Rcpp.

Variations of Fibonacci(n): Matrix power-exponentiation

```
library(expm)
fib5 = function(n) {
  A = matrix(c(1, 1, 1, 0), 2, 2)B = A\% \hat{m}B[1, 2]
}
```
 $\overline{\mathsf{x}}$ \overline{x}

How does **fib5()** work?

$$
\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad \mathbf{A}^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \mathbf{A}^3 = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \quad \mathbf{A}^4 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}
$$

$$
\mathbf{A}^5 = \begin{pmatrix} 8 & 5 \\ 5 & 3 \end{pmatrix} \quad \mathbf{A}^6 = \begin{pmatrix} 13 & 8 \\ 8 & 5 \end{pmatrix} \quad \mathbf{A}^7 = \begin{pmatrix} 21 & 13 \\ 13 & 8 \end{pmatrix} \quad \dots
$$

Matrix power-exponentiation

What does A %²% n do? Computes the n-th power of a matrix corresponding to $n-1$ matrix multiplications (A^n only computes element wise powers). The algorithm uses $\mathcal{O}(log_2(k))$ matrix multiplications.

Exponentiation by squaring:

$$
x^n = \begin{cases} x(x^2)^{\frac{n-1}{2}} & \text{if n is odd} \\ (x^2)^{\frac{n}{2}} & \text{if n is even} \end{cases}
$$

$$
\begin{array}{c}\n\circ \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

Exponentiation by squaring

Implemented as a recursive algorithm:

```
exp.by.squaring = function(x, n) {
  if(n<0) {
    return(exp.by.squaring(1 / x, -n))
  \} else if(n==0){
    return(1)
  } else if(n==1){
    return(x)
  } else if(n%%2 == 0){
    return(exp.by.squaring(x^2, n/2))
  } else {
    return(x * exp. by. squaring(x^2, (n-1)/2))
  }
}
exp.by.squaring(2,5)
## [1] 32
```
X $\times\overline{\times}$

Example 9: The **Traveling Salesman Problem** (TSP) is the problem of planning a route through all locations in such a way that

- The entire route is as short as possible.
- \bullet The first location is equal to the last location.

X X

Left: Route through places in Germany

(https://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden) Right: Weighted graph (<https://www.chegg.com/>)

Exact algorithms with long runtime exist

- Brute force search (Calculate lengths of all possible round trips and choose shortest): O(*n*!)
- Dynamic Programming (Held-Karp algorithm): $\mathcal{O}(n^22^n)$

and heuristic algorithms with shorter runtime, which do not guarantee an optimal solution, e.g.

Nearest-Neighbor heuristics: $\mathcal{O}(n^2)$

The TSP problem is **NP-complete**.

 \times \times

COMPLEXITY CLASSES

In theoretical computer science, problems are divided into complexity classes. For an input size *n* a distinction is made between

- **P**: Problems solvable in polynomial runtime ($\mathcal{O}(n^k)$, $k \geq 1$)
- **NP** (**N**on-deterministic **P**olynomial time): Problems from **P** and problems that cannot be solved in polynomial time; NP problems can only be solved with a non-deterministic turing machine in an acceptable time (hence the name)
- **NP-complete**: All problems from NP can be traced back to this problem

It has not yet been proven that $P \neq NP$ holds.