
Algorithms and Data Structures

Big O
Introduction to Big O

Learning goals
Runtime behavior

Definition of Big O

Classes of functions

EFFICIENCY OF ALGORITHMS

We are interested in the efficiency of algorithms. Efficiency can be
associated with different attributes such as

CPU runtime

Memory usage

Memory usage on the hard drive

We will mainly focus on the runtime behavior of algorithms.

© Algorithms and Data Structures – 1 / 17

THE BIG O NOTATION

When we are interested in the complexity of an algorithm, we are
not interested in the exact number of operations, but rather in the
relationship of the number of operations to the size of the problem.

Usually one is interested in the worst case:
what is the maximum number of operations for a given problem
size?

The Big O notation (also called Bachmann-Landau notation) is
used in mathematics and computer science to classify algorithms
according to how their run time or space requirements grow as the
input size grows.

© Algorithms and Data Structures – 2 / 17

INPUT SIZES

An analysis of complexity depends on how you specify the input size of
a problem.

Typical input sizes are:

Number of elements of a list

Number of bits of a number

Number of nodes in a graph

Number of rows / columns of a matrix

© Algorithms and Data Structures – 3 / 17

INTRODUCTORY EXAMPLE

isElement = function(xs, el) {

for (x in xs) {

if (identical(x, el))

return(TRUE)

}

return(FALSE)

}

expr mean

1 isElement(1:1000, 1000L) 308.286

2 isElement(1:2000, 2000L) 626.519

3 isElement(1:5000, 5000L) 1684.067

4 isElement(1:10000, 10000L) 3137.450

© Algorithms and Data Structures – 4 / 17

INTRODUCTORY EXAMPLE / 2

The input size of the problem is n being the length of vector xs.

The order of the function is O(n) (worst case).

That is:
If we were to evaluate the function for different xs and visualize the
runtime in a graph, it would show that the runtime depends linearly
on the number of elements in xs.

For example, if we always consider the vector xs = 1:n and test
for the number 1, our function would obviously be much faster than
O(n).

© Algorithms and Data Structures – 5 / 17

INTRODUCTORY EXAMPLE / 3

In the best case, we always access the first element of the list. The runtime is constant.

In the worst case we access the n-th element of the list - so n elements have to be

evaluated. On average n
2 evaluations are needed.

© Algorithms and Data Structures – 6 / 17

INTRODUCTORY EXAMPLE / 4

In general, the Big-O notation is used to describe the worst case
and thus represents an upper bound.

Another common performance measure is the average case
runtime.

Many algorithms have poor worst-case performance, but good
average-case performance and are therefore quite practicable
depending on the application.

Less common is the best case performance, i.e. the behavior of
the algorithm under optimal conditions.

© Algorithms and Data Structures – 7 / 17

FORMAL DEFINITION

Let f , g : R→ R be two functions.

We define
f (x) ∈ O(g(x)) for x → ∞

if and only if 2 positive real numbers M and x0 exist, such that

|f (x)| ≤ M · |g(x)| for all x > x0.

Intuition: f does not grow faster than g.

Comment: Often the above definition is abbreviated by f ∈ O(g).

© Algorithms and Data Structures – 8 / 17

FORMAL DEFINITION / 2

Example: We consider the function f (x) = 3x3 + x2 + 100 sin(x).

© Algorithms and Data Structures – 9 / 17

FORMAL DEFINITION

For large x , f (x) is well above 1 · g(x) = 1 · x3

© Algorithms and Data Structures – 10 / 17

FORMAL DEFINITION / 2

We are now looking at the relationship between f (x) and M · x3 for
M = 1, 2, 3, In the graph below we can see that f (x) runs entirely
beneath 4 · x3 for x values greater than ≈ 3,. This means f grows
cubic: f ∈ O(x3).

© Algorithms and Data Structures – 11 / 17

FORMAL DEFINITION / 3

Mathematical derivation:

|f (x)| = |3x3 + x2 + 100 sin(x)| ≤ 3 · |x |3 + x2 + 100 | sin(x)|︸ ︷︷ ︸
≤1

≤ 3 · |x |3 + x2︸︷︷︸
≤|x|3 for x>1

+100

≤ 4|x |3 + 100 for x > 1.

Since 100 ≤ 4|x |3 for x > 3
√

25 ≈ 2.9 it follows

|f (x)| ≤ 4|x3| for x > x0 :=
3
√

25,

or in short f ∈ O(x3), which corresponds to our graphical derivation.

© Algorithms and Data Structures – 12 / 17

FORMAL DEFINITION / 4

For functions f , g : X → R, X ⊂ R you can also use this notation to
examine the behavior of the function f at a certain point a ∈ X (often
a = 0):

f (x) ∈ O(g(x)) for x → a ∈ R

if 2 positive real numbers M and d exist, such that

|f (x)| ≤ M · |g(x)| for |x − a| < d .

© Algorithms and Data Structures – 13 / 17

FORMAL DEFINITION / 5

If g(x) is not equal to 0 and is close enough to a for values of x , then
both definitions can be expressed using the limes superior:

f (x) ∈ O(g(x)) for x → a ∈ R
⇐⇒

lim
x→a

sup
|f (x)|
|g(x)|

< ∞

© Algorithms and Data Structures – 14 / 17

NOTATION

When we talk about the order of a function, we write

f ∈ O(n2)

A second, more commonly used notation is

f = O(n2)

although it is formally incorrect:
n2 = O(n2) and n2/2 = O(n2), but n2 ̸= n2/2

In this context, the "=" is not intended to be a sign of equality, but
a simple "is"

© Algorithms and Data Structures – 15 / 17

CLASSES OF FUNCTIONS

Notation Description
O(1) constant

O(log(n)) logarithmic
O((log(n))c) polylogarithmic

O(n) linear
O(n2) square
O(nc) polynomial
O(cn) exponential

The table is sorted from slow to fast growing for c > 1

© Algorithms and Data Structures – 16 / 17

CLASSES OF FUNCTIONS / 2

© Algorithms and Data Structures – 17 / 17

