
Algorithms and Data Structures

Big O
Algorithms & Turing Machines

Learning goals
Definition of algorithm

Turing machines

Elementary operations



ALGORITHM

The word algorithm is a combination of the Latin word algorismus,
named after the Persian mathematician Al-Khwarizmi, and the Greek
word arithmos (number).

In De numero Indorum (about 825) Al-

Khwarizmi introduced the number zero from

the Indian to the Arabic number system.

Furthermore, in Ludus algebrae almucgra-

balaeque (around 830) he provides a new

systematic method of solving linear and

quadratic systems of equations. The term

algebra goes back to this work.

© Algorithms and Data Structures – 1 / 13



ALGORITHM / 2

What is an algorithm?

... a set of rules that precisely defines a sequence of operations such
that each rule is effective and definite and such that the sequence
terminates in a finite time.

The above definition of the term algorithm is comprehensible, but
mathematically inaccurate.

To receive a more precise definition, a number of approaches have
been developed in the first half of the 20th century.

With the help of the turing machine the term can be specified much
more precisely.

© Algorithms and Data Structures – 2 / 13



TURING MACHINES AND ALGORITHMS

A turing machine consists of

a control unit that contains the program,

an infinitely long memory tape with discrete fields or cells,

a program controlled read-and-write head.

© Algorithms and Data Structures – 3 / 13



TURING MACHINES AND ALGORITHMS / 2

In each step, the turing machine changes to a new state defined in the
program. The read-and-write head

reads or scans the current symbol,

overwrites it,

moves a field to the left or right or stops.

The number of states is finite. The turing machine stops if no transition
to a new state is defined for the current state and the symbol read from
the current cell.

© Algorithms and Data Structures – 4 / 13



TURING MACHINES AND ALGORITHMS / 3

Using the concept of the turing machine we define:

A calculation rule for solving a problem is called an algorithm if
there exists an equivalent turing machine for this calculation rule
which stops for every input that has a solution.

If a (terminating) algorithm exists, the problem is called computable.

Examples:

Computable: determination of the n-th member of the Fibonacci
sequence

Non-computable: The Halting problem (Problem of determining
from a description of an arbitrary computer program and an input
whether the program will finish running or continue to run forever)

© Algorithms and Data Structures – 5 / 13



TURING MACHINES AND ALGORITHMS / 4

The field of computability theory deals in particular with the question
which problems are computable. In computer science it is usually
assumed that the Church-Turing thesis

The class of turing-computable functions corresponds to the
class of intuitively computable functions.

holds. Since the term "intuitively computable function" cannot be
formalized, the thesis cannot be proved.

Computability can also be defined equivalently on the basis of other equally powerful

models of computation such as register machines or the lambda calculus. Due to their

structural simplicity, turing machines are usually chosen in computability theory.

© Algorithms and Data Structures – 6 / 13



TURING MACHINES AND ALGORITHMS / 5

Example for a turing machine: Addition of 1

. . . 1 0 1 1 . . .

s0

State Symbol read Write Move Next state
s0 Blank Blank ← s1

s0 0 0 → s0

s0 1 1 → s0

s1 Blank 1 ← s2

s1 0 1 ← s2

s1 1 0 ← s1

s2 Blank Blank → Stop
s2 0 0 ← s2

s2 1 1 ← s2

Interactive example implementation of different basic operations

© Algorithms and Data Structures – 7 / 13

http://turingmaschine.klickagent.ch/einband


TURING MACHINES AND ALGORITHMS / 6

. . . 1 0 1 1 . . .

s0

. . . 1 0 1 1 . . .

s1

State Symbol read Write Move Next state
s0 Blank Blank ← s1

s0 0 0 → s0

s0 1 1 → s0

s1 Blank 1 ← s2

s1 0 1 ← s2

s1 1 0 ← s1

s2 Blank Blank → Stop
s2 0 0 ← s2

s2 1 1 ← s2

© Algorithms and Data Structures – 8 / 13



TURING MACHINES AND ALGORITHMS / 7

. . . 1 0 0 0 . . .

s1

. . . 1 1 0 0 . . .

s2

State Symbol read Write Move Next state
s0 Blank Blank ← s1

s0 0 0 → s0

s0 1 1 → s0

s1 Blank 1 ← s2

s1 0 1 ← s2

s1 1 0 ← s1

s2 Blank Blank → Stop
s2 0 0 ← s2

s2 1 1 ← s2

© Algorithms and Data Structures – 9 / 13



ALGORITHMS AND ELEMENTARY OPERATIONS

We can theoretically describe the runtime of an algorithm by using
turing machines and counting the number of steps a turing
machine needs to solve the problem.

However, it is usually sufficient to consider an algorithm - less
precise but more intuitive - as a list of instructions.

Using this definition, we can "measure" the runtime by counting
the number of "elementary operations" performed.

An elementary operation is a step that does not depend on the
size of the problem.

This distinction makes it easier for us to measure the runtime of an
algorithm.

© Algorithms and Data Structures – 10 / 13



ALGORITHMS AND ELEMENTARY OPERATIONS / 2

For simplicity, we assume that the time needed to evaluate a function is
proportional to the number of "elementary operations" performed.

Examples of elementary operations:

An arithmetic operation, e.g. x + y

An assignment, e.g. x = 1

A test, e.g. x == 3

© Algorithms and Data Structures – 11 / 13



ALGORITHMS AND ELEMENTARY OPERATIONS / 3

Caution:

Strictly speaking, the runtime of arithmetic operations depends on
the problem, e.g. when adding x + y , it depends on the size of the
numbers x , y .

Nevertheless, we count each arithmetic operation as one step and
assume that the runtime of the operation is not influenced by the
number itself.

In most cases this is not a problem, since the size of the numbers
does not grow systematically as the algorithm progresses.

However, there are exceptions where the complexity depends
significantly on the size of the number (e.g., testing whether a
number is a prime). Here one would use a different calculation
model such as the number of bit operations.

© Algorithms and Data Structures – 12 / 13



RUNTIME GROWTH (EXAMPLE)

Let’s say you want to check if integer x is a prime number!

For solving the problem you use two different algorithms:
1 The first algorithm divides x by every integer from 2 to x-1 to

determine its divisibility.
2 The second algorithm divides x by every integer from 2 to

sqrt(x) to determine its divisibility.

Both algorithms will provide the correct result*, but while the number of
basic operations in algorithm 1 is x-2, the number of basic operations
in algorithm 2 is < sqrt(x) and hence for x > 4 algorithm 2 is much
faster and its runtime grows much slower!

*Obviously, if x1 > sqrt(x), then x2 = x/x1 results in x2 < sqrt(x) so you just have to

check the integers ≤ sqrt(x)!

© Algorithms and Data Structures – 13 / 13


