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CONDITION NUMBER: MATRIX MULTIPLICATION

Although we are actually interested in x = A−1y, we first consider the
direct problem: y = Ax.

Since

yi =
n∑

j=1

Aijxj ,

it is to be expected that the high condition number of the addition is also
transferred to Ax.
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When A and x are disturbed by ∆A and ∆x, the absolute error in the
result y is:

y +∆y = (A +∆A)(x +∆x)

= Ax +∆Ax + A∆x +∆A∆x | − y

∆y = ∆Ax + A∆x +∆A∆x

The absolute error is therefore estimated as follows

→ ∥∆y∥ = ∥∆Ax + A∆x +∆A∆x∥
≤ ∥∆A∥∥x∥+ ∥A∥∥∆x∥+ ∥∆A∥∥∆x∥
≈ ∥∆A∥∥x∥+ ∥A∥∥∆x∥
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From the estimate for the absolute error, we obtain

∥∆y∥ ≤ ∥∆A∥∥x∥+ ∥A∥∥∆x∥

= (∥∆A∥∥x∥+ ∥A∥∥∆x∥)∥x∥
∥x∥

= (∥∆A∥∥x∥+ ∥A∥∥∆x∥)∥A−1y∥
∥x∥

≤ (∥∆A∥∥x∥+ ∥A∥∥∆x∥)∥A−1∥∥y∥
∥x∥

=

(
∥A∥
∥A∥

∥∆A∥∥x∥+ ∥A∥∥∆x∥
)

∥A−1∥∥y∥
∥x∥

=

(
∥A∥∥A−1∥
∥A∥∥x∥

∥∆A∥∥x∥+ ∥A∥∥A−1∥∥∆x∥
∥x∥

)
∥y∥

∥∆y∥
∥y∥

≤ ∥A∥∥A−1∥
(
∥∆A∥
∥A∥

+
∥∆x∥
∥x∥

)
.
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The condition number
κ(A) = ∥A∥∥A−1∥

describes the propagation of relative errors both in the matrix and on the right
side of the LES.

Example:

y = Ax, A =

(
1 1
1 1 + ϵ

)
, xT =

(
1 −1

)
∥A∥∞ = 2 + ϵ, A−1 =

1
1 + ϵ− 1

(
1 + ϵ −1
−1 1

)
, ∥A−1∥∞ =

2 + ϵ

ϵ

κ(A) = (2 + ϵ)
2 + ϵ

ϵ
=

4 + 4ϵ+ ϵ2

ϵ
≈ 4

ϵ
and ϵ ≪ 1.

ϵ = 10−8 and machine epsilon eps = 10−16 in x result in a relative precision
of just about 4/10−8 · 10−16 = 4 · 10−8 in y.
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CONDITION NUMBER: LES

The solution of the LES x = A−1y is (numerically) equivalent to the
results of the matrix multiplication. The following applies

κ(A) = ∥A∥∥A−1∥ = κ(A−1).

Note:
κ(A) = ∥A∥∥A−1∥ ≥ ∥AA−1∥ = ∥I∥ = 1.

Example 1:

Consider the matrix A =

(
1 1

1 + 10−10 1 − 10−10

)
The matrix is ill-conditioned with condition number κ ≈ 2 × 109.
For the solution of the LES Ax = y this means: a small variation in the
input data (e.g. y = (1, 1) → ỹ = (1, 1.00001)) leads to a big change
in the solution.
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A = matrix(c(1, 1 + 10e-10, 1, 1 - 10e-10), nrow = 2)

y = c(1, 1)

yt = c(1, 1.00001)

solve(A, y)

## [1] 0.4999999722444252 0.5000000277555748

solve(A, yt)

## [1] 5000.499858862901 -4999.499858862901
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Example 2: The Hilbert matrix is known to be ill-conditioned!

Hij =
1

i + j − 1
,

hilbert = function(n) {

i = 1:n

return(1 / outer(i - 1, i, "+"))

}

hilbert(4)
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## [,1] [,2]

## [1,] 1.0000000000000000 0.5000000000000000

## [2,] 0.5000000000000000 0.3333333333333333

## [3,] 0.3333333333333333 0.2500000000000000

## [4,] 0.2500000000000000 0.2000000000000000

## [,3] [,4]

## [1,] 0.3333333333333333 0.2500000000000000

## [2,] 0.2500000000000000 0.2000000000000000

## [3,] 0.2000000000000000 0.1666666666666667

## [4,] 0.1666666666666667 0.1428571428571428
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foo = function(n) {

cond = sapply(n, function(i) {

norm(hilbert(i)) * norm(solve(hilbert(i)))

})

return(cbind(n, cond))

}

foo(4:10)

## n cond

## [1,] 4 2.837499999999738e+04

## [2,] 5 9.436559999999363e+05

## [3,] 6 2.907027900294877e+07

## [4,] 7 9.851948897194694e+08

## [5,] 8 3.387279082022739e+10

## [6,] 9 1.099650993366049e+12

## [7,] 10 3.535372424347476e+13

© Algorithms and Data Structures – 9 / 14



WELL- VS. ILL-POSED PROBLEMS

A problem is called well-posed if the following holds:

There exists a solution for the problem

The existing solution is unique

The solution depends continuously on the condition of the problem
(stable)

A problem is called ill-posed if it violates at least one of these
properties. However, the instability of solutions usually causes the most
difficulties.
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"DO NOT INVERT THAT MATRIX"
Important: Never solve an LES (numerically) using x = A−1y.

solve(A) %*% y

Although theoretically correct, internally two (possibly ill-posed)
problems are solved:

Inversion of A (solution of Ax = 0) has a condition of ∥A∥∥A−1∥
The multiplication of A−1 · y has a condition of ∥A∥∥A−1∥

The condition inflates: ∥A∥2∥A−1∥2
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"DO NOT INVERT THAT MATRIX" / 2

Better: Solve directly by

solve(A, y)

Advantages:

Stability: In the worst case only one ill-posed subproblem is
solved.

Memory: The n2 entries of the inverted matrix A−1 must be saved.
With a direct solution via the LES only x ∈ Rn is stored ( 1

n -th of
storage space).

Systems of equations can be solved efficiently and numerically stable
by means of matrix decompositions (more on this in chapter 7 - matrix
decompositions).
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SHERMAN-MORRISON FORMULA

If a matrix X can be represented by X = A + uvT , X−1 can be
calculated using the Sherman-Morrison formula as follows:

X−1 = (A + uvT )−1 = A−1 − A−1uvT A−1

1 − vT A−1u
Proof:
X · X−1 = (A + uvT )(A−1 − A−1uvT A−1

1 − vT A−1u
)

= AA−1 + uvT A−1 − AA−1uvT A−1 − uvT A−1uvT A−1

1 − vT A−1u

= I + uvT A−1 − uvT A−1 − uvT A−1uvT A−1

1 − vT A−1u

= I + uvT A−1 − u(1 − vT A−1u)vT A−1

1 − vT A−1u
= I + uvT A−1 − uvT A−1 = I
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WOODBURY FORMULA

If a matrix X can be represented by X = A + UCV , X−1 can be
calculated using the Woodbury formula as:

X−1 = (A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

The formula is especially useful if A−1 is very easy to calculate or has
already been calculated.

The Woodbury formula is often used in optimization (low-rank updates,
BFGS updates). See Chapter 10 (Multivariate Optimization) for more
information.

© Algorithms and Data Structures – 14 / 14


