Algorithms and Data Structures

Numerics
Condition in systems of linear equations
(LES)

Learning goals

[Z; Z;] [bn b12 @ Matrix multiplication
by b
“ 22 @ LES

az1 Az
@ Sherman-Morrison formula

a11b11 + @12b21 ay1b1z + a12ba;
= |az1b11 + azba1  Az1b1a + Azaby;
@ Woodbury formula

az1b11 + azzbay  azibiz + azaby;
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CONDITION NUMBER: MATRIX MULTIPLICATION

Although we are actually interested in x = A~ 'y, we first consider the
direct problem: y = Ax.

Since
n
Yi = Z AIjX]7
j=1

it is to be expected that the high condition number of the addition is also
transferred to Ax.
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CONDITION NUMBER: MATRIX MULTIPLICATION
/2

When A and x are disturbed by AA and Ax, the absolute error in the
resulty is:

y+Ay = (A+ AA)(x+ Ax)
= Ax+ AAx + AAX + AAAX |—y
Ay = AAx+ AAx+ AAAX

The absolute error is therefore estimated as follows

— ||Ay|| = ||AAx+ AAx + AAAX||
[AA[[[[x][ + [|A][l| Ax][ + [| AA][[| Ax]]
[AA[[[[x][ + [[Allll Ax]

IN

Q
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CONDITION NUMBER: MATRIX MULTIPLICATION
/3

From the estimate for the absolute error, we obtain
Ayl < [[AA][x]| + [[A[[]|Ax||
]|
(IAAx] + [|A[[AX]) = T
A"y
(1]l
A"l lyll
]|

1A 1A~ Iyl
[[AA[]]| + (Al Ax]
(AII By

IAA~T —1y 12X
[AA] I+ LA A Iyl
< A ]I

Ayl —1y (I1AA] [[Ax]]
< [IAJHIA=T] + -
Iyl IA] [l

= ([1AA]x] + [[Afl Ax])

IN

(TAA[[lxI[ + [IA[[Ax])
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CONDITION NUMBER: MATRIX MULTIPLICATION
/4

The condition number
r(A) = || A[[[[A~]|

describes the propagation of relative errors both in the matrix and on the right
side of the LES.

Example:
_ (11 r B
y = Ax, A_(1 1+€>, x'=(1 —1)
_ 1 1+e —1 _ 2+¢€
_ 1_ 3 Moo =
Il =2 se A= (TR a2
2 444 2 4
K(A)=(24¢) te_dtdetre 4 and e< 1.
€ € €

€ = 1078 and machine epsilon eps = 10~ in x result in a relative precision
of just about 4/1078 .10 = 4.10"8iny.
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CONDITION NUMBER: LES

The solution of the LES x = A"y is (numerically) equivalent to the
results of the matrix multiplication. The following applies

r(A) = [AlIATT| = w(AT").
Note:
k() = |A[ATT] = [|AATT = ]| = 1.
Example 1:
: . 1 1
Consider the matrix A = <1 L10-10 q_ 1010)

The matrix is ill-conditioned with condition number s ~ 2 x 10°.

For the solution of the LES Ax = y this means: a small variation in the
input data (e.g. y = (1,1) — y = (1, 1.00001)) leads to a big change
in the solution.

Algorithms and Data Structures — 5/ 14

X X



CONDITION NUMBER: LES /2

A = matrix(c(l, 1 + 10e-10, 1, 1 - 10e-10), nrow = 2)
y = c(1, 1)
yt = c(1, 1.00001)

solve(d, y)
## [1] 0.4999999722444252 0.5000000277555748

solve(A, yt)
## [1] 5000.499858862901 -4999.499858862901
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CONDITION NUMBER: LES /3

Example 2: The Hilbert matrix is known to be ill-conditioned!

1
Hij )
i+j—1
hilbert = function(n) {
i=1:n
return(l / outer(i - 1, i, "+"))
}
hilbert (4)
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CONDITION NUMBER: LES /4

##
##
##
##
##
##
##

##
##

[1,]
[2,]
[3,]
[4,]

[1,]
## [

3
[4

>

>

>

]
]

O O O+

O O O O

[,1]

.0000000000000000
.5000000000000000
.3333333333333333
.2500000000000000

[,3]

.3333333333333333
.2500000000000000
.2000000000000000
.1666666666666667

[,2]

.5000000000000000
.3333333333333333
.2500000000000000
.2000000000000000

[.4]

.2500000000000000
.2000000000000000
.1666666666666667
.1428571428571428
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CONDITION NUMBER: LES /5

foo = function(n) {

cond = sapply(n, function(i) {
norm(hilbert(i)) * norm(solve(hilbert(i)))

b

return(cbind(n, cond))
}
foo(4:10)
## n cond
## [1,] 4 2.837499999999738e+04
## [2,] 5 9.436559999999363e+05
## [3,]1 6 2.907027900294877e+07
## [4,] 7 9.851948897194694e+08
## [5,] 8 3.387279082022739%e+10
## [6,]1 9 1.099650993366049e+12
## [7,] 10 3.535372424347476e+13
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WELL- VS. ILL-POSED PROBLEMS

A problem is called well-posed if the following holds:
@ There exists a solution for the problem
@ The existing solution is unique

@ The solution depends continuously on the condition of the problem
(stable)

A problem is called ill-posed if it violates at least one of these
properties. However, the instability of solutions usually causes the most
difficulties.
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"DO NOT INVERT THAT MATRIX"

Important: Never solve an LES (numerically) using x = A~ 'y. x

solve(A) %*% y x

X X

Although theoretically correct, internally two (possibly ill-posed)
problems are solved:

@ Inversion of A (solution of Ax = 0) has a condition of || A/||A™"]]

@ The multiplication of A= -y has a condition of || AJ|[|A™"|
The condition inflates: ||A||?||A~"||?
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"DO NOT INVERT THAT MATRIX" /2

Better: Solve directly by

solve(A, y)

Advantages:

@ Stability: In the worst case only one ill-posed subproblem is
solved.

@ Memory: The n? entries of the inverted matrix A~ must be saved.

With a direct solution via the LES only x € R" is stored (%-th of
storage space).
Systems of equations can be solved efficiently and numerically stable
by means of matrix decompositions (more on this in chapter 7 - matrix
decompositions).
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SHERMAN-MORRISON FORMULA

If a matrix X can be represented by X = A + uv’, X~' can be
calculated using the Sherman-Morrison formula as follows:

A uvTA!
X '=(A+uv) '=pAT"1T_"__ """
(A+ ) 1—viA~'u
Proof:
A uvTA
X-X'" = A+uwH)(A T - —— —
(A+uvi)( T vAT)
AA "uv'A~' —uv A Tuv'A!
v 1—viA—'u
Ta—1 TA—1 50, T A1
uv' A7 —uv' A 'uv'A
= I+uv'A"—
+ 1—viA-lu
4 u(l—=viIATTu)v A
= I+uv'A' =
+ 1—viA-'u

= I+uv'A " —uvAT =1
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WOODBURY FORMULA

If a matrix X can be represented by X = A + UCV, X' can be
calculated using the Woodbury formula as:

X'=A+Ucy)'=A"—ATU(CTT+VATTU) VAT

The formula is especially useful if A= is very easy to calculate or has
already been calculated.

The Woodbury formula is often used in optimization (low-rank updates,
BFGS updates). See Chapter 10 (Multivariate Optimization) for more
information.
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