
Algorithms and Data Structures

Numerics
Numerical Stability

Learning goals
Stability of algorithms

STABILITY OF ALGORITHMS

The condition of a problem describes the "error amplification" of
input errors.

The condition is given by the problem (or the data) and we have
usually no influence on it.

In practice, a numerical task is often divided into smaller
subproblems, i.e. an algorithm

f = fm ◦ fm−1 ◦ ... ◦ f1

is performed.

We can influence the way how we solve the problem, i.e. the
algorithm.

© Algorithms and Data Structures – 1 / 12

STABILITY OF ALGORITHMS / 2

At best, the amplification of the error is not much greater than the
condition of the problem. The algorithm is called stable.

If the problem is well-conditioned, then a stable algorithm should also
be found for calculation.

If either the problem is ill-conditioned or the algorithm is unstable, the
result should be questioned.

© Algorithms and Data Structures – 2 / 12

STABILITY OF ALGORITHMS / 3

There are two concepts that can be used to investigate the stability of
an algorithm:

In the forward analysis, the error is estimated and accumulated
for each partial result.

In the backward analysis, the result is interpreted as an exactly
calculated result for disturbed data. For which input x̃ would f
return the same result?

f̃ (x) = f (x̃)?

If |x̃ − x | is small, the algorithm is backward stable.

© Algorithms and Data Structures – 3 / 12

EXAMPLES OF STABILITY

Example 1:
We would like to calculate the smallest absolute root of the quadratic
equation p(x) = x2 − 2bx + c = 0, using the solution formula

x0 = b −
√

b2 − c

In this case, (b, c) are given by the problem and the root is the desired
result. The algorithm should map (b, c) to the root value x0

(f : (b, c) 7→ x0).

For simplification, b ∈ R is fixed and we examine the condition of the
problem at c using the formula

κ =
|c|

|f (c)|
|f ′(c)|.

© Algorithms and Data Structures – 4 / 12

EXAMPLES OF STABILITY / 2

f ′(c) =
1
2
(b2 − c)−1/2 =

1

2
√

b2 − c

κ =

∣∣∣∣ c

2
√

b2 − c(b −
√

b2 − c)

∣∣∣∣
=

1
2

∣∣∣∣ c(b +
√

b2 − c)√
b2 − c(b −

√
b2 − c)(b +

√
b2 − c)

∣∣∣∣
=

1
2

∣∣∣∣b +
√

b2 − c√
b2 − c

∣∣∣∣
Especially for c ≪ b2 the problem is well-conditioned.

© Algorithms and Data Structures – 5 / 12

EXAMPLES OF STABILITY / 3

Let

b = 400000

c = - 1.234567890123456

Then the problem is well-conditioned with κ = 0.999999999998071

But note that κ gives the condition for the function, not the
implementation!

sqrt(b^2 - c); b

[1] 400000.0000015432

[1] 4e+05

We expect a loss of significance. We lose 11 decimal places in
accuracy. Therefore a maximum of 16 − 11 = 5 decimals should be
correct in the result.

© Algorithms and Data Structures – 6 / 12

EXAMPLES OF STABILITY / 4

The following formula provides a stable implementation:

y =
c
z

z = b +
√

b2 − c

Stable alternative for x0

x0.instable = b - sqrt(b^2 - c)

x0.stable = c / (b + sqrt(b^2 - c))

c(x0.instable, x0.stable)

[1] -1.543201506137848e-06 -1.543209862651343e-06

p = function(x) x^2 - 2 * b * x + c

c(p(x0.instable), p(x0.stable))

[1] -6.685210796275598e-06 0.000000000000000e+00

© Algorithms and Data Structures – 7 / 12

EXAMPLES OF STABILITY / 5

Example 2:
The logistic function

f (x) =
1

1 + exp(−x)
=

exp(x)
1 + exp(x)

and its generalization, the softmax function,

s(x)k =
exp(xk)∑

j exp(xj)

play an important role in statistical applications and machine learning:

(logistic) distribution function

logistic regression

activation function in neural networks

© Algorithms and Data Structures – 8 / 12

EXAMPLES OF STABILITY / 6

Large absolute values of xj can result in an

Underflow (large negative values → 0)

Overflow (large positive values → ∞)

exp(-500)

[1] 7.124576406741286e-218

.Machine$double.xmin

[1] 2.225073858507201e-308

exp(-1000)

[1] 0

exp(1000)

[1] Inf

© Algorithms and Data Structures – 9 / 12

EXAMPLES OF STABILITY / 7

Overflow is avoided by the following equivalent equation

s(x)k =
exp(xk − b)∑

j exp(xj − b)
, b := max

i
xi

softmax = function(x) exp(x) / sum(exp(x))

x = c(990, 1000, 999)

softmax(x) # Instable version (Overflow)

[1] NaN NaN NaN

softmax(x - 1000) # stable version without Overflow

[1] 3.318890658198521e-05 7.310343155951328e-01

[3] 2.689324954982852e-01

© Algorithms and Data Structures – 10 / 12

EXAMPLES OF STABILITY / 8

Another problem is underflow in the numerator. A naive implementation
of the log softmax function leads to problems.

x = c(800, 0.0001, -800)

log.softmax = function(x) {

r = sapply(x, function(t) exp(t) / sum(exp(x)))

log(r)

}

log.softmax(x)

[1] NaN -Inf -Inf

© Algorithms and Data Structures – 11 / 12

EXAMPLES OF STABILITY / 9

Stable alternative implementation:

log s(x)k = xk − b − log
n∑

j=1

exp(xj − b), b := max
i

xi

log.softmax2 = function(x) {

b = max(x)

logsum = b + log(sum(exp(x - b)))

sapply(x, function(t) t - logsum)

}

log.softmax2(x)

[1] 0.0000 -799.9999 -1600.0000

© Algorithms and Data Structures – 12 / 12

