Algorithms and Data Structures X

Numerics
Numerical Stability X X

Learning goals

200 l M [@ Stability of algorithms

4 6
Number of double counts

STABILITY OF ALGORITHMS

@ The condition of a problem describes the "error amplification" of
input errors.

@ The condition is given by the problem (or the data) and we have
usually no influence on it.

@ In practice, a numerical task is often divided into smaller
subproblems, i.e. an algorithm

f=fhofp_10...0f

is performed.

@ We can influence the way how we solve the problem, i.e. the
algorithm.

Algorithms and Data Structures — 1/12

X X

STABILITY OF ALGORITHMS /2

At best, the amplification of the error is not much greater than the
condition of the problem. The algorithm is called stable.

If the problem is well-conditioned, then a stable algorithm should also
be found for calculation.

If either the problem is ill-conditioned or the algorithm is unstable, the
result should be questioned.

Algorithms and Data Structures — 2/12

X X

STABILITY OF ALGORITHMS /3

There are two concepts that can be used to investigate the stability of
an algorithm:
@ In the forward analysis, the error is estimated and accumulated
for each partial result.
@ In the backward analysis, the result is interpreted as an exactly
calculated result for disturbed data. For which input X would f
return the same result?

If | X — x| is small, the algorithm is backward stable.

Algorithms and Data Structures — 3/12

X X

EXAMPLES OF STABILITY

Example 1:
We would like to calculate the smallest absolute root of the quadratic
equation p(x) = x2 — 2bx + ¢ = 0, using the solution formula

onb— b2 —c

In this case, (b, c¢) are given by the problem and the root is the desired
result. The algorithm should map (b, ¢) to the root value xo
(f: (b, c) — xp)-

For simplification, b € R is fixed and we examine the condition of the
problem at ¢ using the formula

¢]

" (c)]

()]

Algorithms and Data Structures — 4 /12

X X

EXAMPLES OF STABILITY /2
X

1

2Vb2 —¢ X

flc) = (bP—c) 2=

(o
‘Nﬁ(b—ﬂ)
1 c(b+ VB2 —¢)
2‘@(1)—@)(“ Vb2 —¢)
_ 1‘b+m

2 b2 — ¢

K =

X X

Especially for ¢ < b? the problem is well-conditioned.

Algorithms and Data Structures — 5/ 12

EXAMPLES OF STABILITY /3
Let X

b = 400000
c = - 1.234567890123456 x
Then the problem is well-conditioned with £ = 0.999999999998071 x x

But note that x gives the condition for the function, not the
implementation!

sqrt(b”2 - ¢); b
[1] 400000.0000015432
[1] 4e+05

We expect a loss of significance. We lose 11 decimal places in
accuracy. Therefore a maximum of 16 — 11 = 5 decimals should be
correct in the result.

Algorithms and Data Structures — 6/ 12

EXAMPLES OF STABILITY /4

The following formula provides a stable implementation:

yzg z=b+Vb—c

Stable alternative for x0
x0.instable = b - sqrt(b~2 - c)
x0.stable = ¢ / (b + sqrt(b”2 - c))

c(x0.instable, x0.stable)
[1] -1.543201506137848e-06 -1.543209862651343e-06

p = function(x) x°2 - 2 * b *x x + ¢
c(p(x0.instable), p(x0.stable))
[1] -6.685210796275598e-06 0.000000000000000e+00

Algorithms and Data Structures — 7/12

X X

EXAMPLES OF STABILITY /5

Example 2:
The logistic function

1
1+exp(—x) 1+ exp(x)
and its generalization, the softmax function,
exp(Xk)
S(X)k = =~
= 5 expli)

play an important role in statistical applications and machine learning:
@ (logistic) distribution function
@ logistic regression

@ activation function in neural networks

Algorithms and Data Structures — 8/ 12

X X

EXAMPLES OF STABILITY /s

Large absolute values of x; can result in an
@ Underflow (large negative values — 0)
@ Overflow (large positive values — o)

exp (-500)
[1] 7.124576406741286e-218

.Machine$double.xmin
[1] 2.225073858507201e-308

exp (-1000)
[1]1 ©

exp (1000)
[1] Inf

Algorithms and Data Structures — 9/12

X X

EXAMPLES OF STABILITY /7
Overflow is avoided by the following equivalent equation

exp(xx — b)

SO0 = S ey — b)°

b := maxx;
i

softmax = function(x) exp(x) / sum(exp(x))
x = ¢(990, 1000, 999)

softmax(x) # Instable version (Overflow)
[1] NaN NaN NaN

softmax(x - 1000) # stable version without Overflow
[1] 3.318890658198521e-05 7.310343155951328e-01
[3] 2.689324954982852e-01

Algorithms and Data Structures — 10/ 12

X X

EXAMPLES OF STABILITY /s

Another problem is underflow in the numerator. A naive implementation
of the log softmax function leads to problems.

x = ¢(800, 0.0001, -800)

log.softmax = function(x) {
r = sapply(x, function(t) exp(t) / sum(exp(x)))
log(r)

}

log.softmax(x)
[1] NaN -Inf -Inf

Algorithms and Data Structures — 11/12

X X

EXAMPLES OF STABILITY /9

Stable alternative implementation:

n
log s(X)x = xx — b — IogZexp(xj — b), b := max Xx;
]
j=1

log.softmax2 = function(x) {
b = max(x)
logsum = b + log(sum(exp(x - b)))
sapply(x, function(t) t - logsum)
}

log.softmax2(x)
[1] 0.0000 -799.9999 -1600.0000

Algorithms and Data Structures — 12/12

X X

