
Algorithms and Data Structures

Numerics
Numerical Error & Conditioning

Learning goals
Error caused by condition of the
problem

Error caused by stability of algorithms

NUMERICAL ERROR

Errors in the result are caused by

Data error or input error; often unavoidable, are part of the problem
→ Condition of the problem

Error in the algorithm that can often be fixed by modification
→ Stability of algorithms

© Algorithms and Data Structures – 1 / 16

NUMERICAL ERROR / 2

Given: Approximate value x̃ for exact value x .

Absolute error (this is signed!):

∆x = x̃ − x

If |∆x | ≤ ϵ, then ϵ is known as absolute error bound.

Relative error:

δx =
|x̃ − x |
|x |

=
|∆x |
|x |

If δx ≤ ρ, then ρ is known as relative error bound.

Comment:
Relative error is dimensionless, value in denominator may obviously not
be too close to zero (→ use absolute error instead).

© Algorithms and Data Structures – 2 / 16

NUMERICAL ERROR / 3

The following holds:

x̃ = x
(

1 +
∆x
x

)
If only the first m digits of a number are determined in decimal
representation, a possible relative error of 10−m results (and vice
versa).

© Algorithms and Data Structures – 3 / 16

CONDITION OF A PROBLEM

How sensitive is the result to a small disturbance of the data?

Well-conditioned: Result is a little sensitive

Ill-conditioned: Result is very sensitive

This is particularly important in statistics, since data is usually
error-prone.

© Algorithms and Data Structures – 4 / 16

CONDITION OF A PROBLEM / 2

Example 1: System of equations

0.835x + 0.667y = 0.168

0.333x + 0.266y = 0.067

The solution is x = 1 and y = −1.

By a small change of the right side, for example 0.067 → 0.066, the
solution changes to x = −666 and y = 834.

© Algorithms and Data Structures – 5 / 16

CONDITION OF A PROBLEM / 3

Example 2: Intersection of two straight lines

In the left case (ill-conditioned problem) a small disturbance has a big influence on the

solution (position of the intersection). In the right case (well-conditioned) the

disturbance has only a minor effect on the solution.

© Algorithms and Data Structures – 6 / 16

CONDITION (DEFINITION)

Consider a problem of form y = f (x). Condition describes to what
extent the solution changes with minor data disturbance (x̃ = x + δx).

Condition number (at position x): the smallest κ ≥ 0, so that

|f (x +∆x)− y |
|y |

≤ κ
|∆x |
|x |

for ∆x → 0.

The condition therefore compares the relative error of input and output.
A problem is

Well-conditioned if κ ̸≫ 1

Ill-conditioned if κ ≫ 1

Ill-posed when κ = ∞
Note that for machine numbers ∆x < ϵm (approximation error when importing data)!

© Algorithms and Data Structures – 7 / 16

CONDITION FOR VECTORS

For vectors, errors are defined by means of a suitable norm.

Absolute error:
∆x = x̃ − x

Relative error:

δ =
∥x̃ − x∥
∥x∥

Similarly, for f : Rn → Rd the norm-wise condition at the location x is
defined by using the condition number.

Condition number: The smallest κ ≥ 0, such that

∥f (x +∆x)− y∥
∥y∥

≤ κ
∥∆x∥
∥x∥

for ∥∆x∥ → 0.

© Algorithms and Data Structures – 8 / 16

CONDITION FOR VECTORS / 2

Let f : Rn → R be differentiable in point x , the condition can be
specified using the derivative:

κ =
∥x∥

∥f (x)∥
∥∇f (x)∥.

Proof sketch:
The definition of the condition can be written as

κ = lim sup
∥∆x∥→0

∥f (x +∆x)− y∥
∥y∥

∥x∥
∥∆x∥ = lim sup

∥∆x∥→0

∥f (x +∆x)− y∥
∥∆x∥

∥x∥
∥f (x)∥

According to the mean value theorem the following applies: there is a v ∈ (0,∆x)
such that

∇f (x + v) =
∥f (x +∆x)− y∥

∥∆x∥ .

© Algorithms and Data Structures – 9 / 16

CONDITION FOR VECTORS / 3

From ∥∆x∥ → 0 follows ∥v∥ → 0 and thus

κ = lim sup
∥∆x∥→0

∥∇f (x + v)∥ ∥x∥
∥f (x)∥ = ∥∇f (x)∥ ∥x∥

∥f (x)∥

∇f (x) corresponds to the 1 × n Jacobi matrix here. Thus,
∥∇f (x)∥ is an induced matrix norm.

The condition depends on the choice of the vector norm / induced
matrix norm.

© Algorithms and Data Structures – 10 / 16

ARITHMETIC OPERATIONS

Multiplication:
We look at f (x1, x2) = x1 · x2 and calculate κ using

κ =
∥∇f (x)∥1 · ∥x∥1

|f (x)|
Since

∥∇f (x)∥1 = ∥(x2, x1)∥1
∗
= max(|x1|, |x2|)

∥x∥1 = ∥(x1, x2)∥1 = |x1|+ |x2|

|f (x)| = |x1x2|

we get κ = 1 + max(|x1|,|x2|)
min(|x1|,|x2|) . So κ becomes very big for x2 ≪ x1.

∗ Attention: induced matrix norm (maximum absolute column sum norm).

© Algorithms and Data Structures – 11 / 16

ARITHMETIC OPERATIONS / 2

Addition / Subtraction:
We will consider f (x1, x2) = x1 ± x2 and calculate κ using

κ =
∥∇f (x)∥1 · ∥x∥1

|f (x)|
Since

∥∇f (x)∥1 = ∥(1,±1)∥ ∗
= 1

∥x∥1 = ∥(x1, x2)∥1 = |x1|+ |x2|
|f (x)| = |x1 ± x2|

we get κ = |x1|+|x2|
|x1±x2| .

∗ Attention: induced matrix norm (maximum absolute column sum norm).

© Algorithms and Data Structures – 12 / 16

ARITHMETIC OPERATIONS / 3

The addition of two positive numbers is well-conditioned with
κ = |x1|+|x2|

|x1+x2| = 1.

In the case of x1 ≈ x2, the subtraction of two positive numbers is
very ill-conditioned (κ = |x1|+|x2|

|x1+(−x2)| becomes arbitrarily large).

This problem is known as loss of significance.

© Algorithms and Data Structures – 13 / 16

LOSS OF SIGNIFICANCE (EXAMPLE)

x = 1.234567890123456

y = 1.234567890000000

Theoretically we should get a result of 1.23456e-10 for the difference
x − y . But the computer returns

x - y

[1] 1.234561342045026e-10

Why is this the case?

© Algorithms and Data Structures – 14 / 16

LOSS OF SIGNIFICANCE (EXAMPLE) / 2

The numbers x , y cannot be represented exactly in floating point
notation, but only as a rounded number with 16 significant digits. This
inaccurate representation results in "uncertainties" from the 17th
decimal place on.

sprintf("%.20f", x)

[1] "1.23456789012345602430"

sprintf("%.20f", y)

[1] "1.23456788999999989009"

© Algorithms and Data Structures – 15 / 16

LOSS OF SIGNIFICANCE (EXAMPLE) / 3

By subtracting the two numbers, the first 10 significant digits cancel
each other out. The uncertainties from the 17th place now shift to the
7th significant place.

Due to the loss of significance we have lost 10 = 16 − 6 digits (number
of significant digits - number of deleted digits) in accuracy.

1.234567890123456???...

−1.234567890000000???...

0.000000000123456???...

= 1.23456???...× 10−10

© Algorithms and Data Structures – 16 / 16

