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PECULIARITIES OF MACHINE ARITHMETIC

Common arithmetic properties are no longer fulfilled.

For simplicity, we use decimal representation with m = 4 and rounding.
Associative property:

a = 4, b = 5003, c = 5000 ⇒
a = 0.4 · 101, b = 0.5003 · 104, c = 0.5 · 104

(ã + b̃) = 0.4 · 101 + 0.5003 · 104 = 0.5007 · 104

(ã + b̃) + c̃ = 0.5007 · 104 + 0.5 · 104 = 1.0007 · 104

≈ 0.1001 · 105 = 10010

(b̃ + c̃) = 0.5003 · 104 + 0.5 · 104 = 1.0003 · 104

≈ 0.1000 · 105

(b̃ + c̃) + ã = 0.1000 · 105 + 0.4 · 101 = 0.10004 · 105

≈ 0.1000 · 105 = 10000
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PECULIARITIES OF MACHINE ARITHMETIC / 2

Distributive property:

2 · (b̃ − c̃) = 2 · (0.5003 · 104 − 0.5 · 104)

= 0.0006 · 104 = 6

(2 · b̃ − 2 · c̃) = 2 · 0.5003 · 104 − 2 · 0.5 · 104

= 1.0006 · 104 − 1 · 104

≈ 0.1001 · 105 − 0.1 · 105 = 0.0001 · 105 = 10

Problem in the second example: catastrophic cancellation.
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EXAMPLES

1e16 - 1e16

## [1] 0

(1e16 + 1) - 1e16

## [1] 0

(1e16 + 2) - 1e16

## [1] 2

1e16 cannot be represented exactly since it is larger than 253, hence
the distance is greater than 1.
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EXAMPLES

x = seq(1, 2e16, length = 100000)

s1 = sum(x)

s2 = sum(rev(x))

s1

## [1] 1e+21

s2

## [1] 1e+21

## [1] 1e+21

s1 - s2

## [1] -262144
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ORDER OF ADDITION

General recommendation: Start with numbers having the smallest
absolute values.

Assuming 0 ≤ a1 ≤ a2 · · · ≤ an, there are still various ways to perform
the summation, e.g.:

(((a1 + a2) + a3) + a4) + a5

((a1 + a2) + (a3 + a4)) + a5

((a1 + a2) + a3) + (a4 + a5)

Remark: Particularly bad errors can occur when calculating differences
of numbers on computers (this will be discussed in another lecture).
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CALCULATION OF VARIANCES

Sample: x1 = 356, x2 = 357, x3 = 358, x4 = 359, x5 = 360

4S2 =
5∑

i=1

(xi − x̄)2 =
5∑

i=1

x2
i − 5(x̄)2 = 10

Not like that in decimal machine arithmetic with m = 4:

First formula OK, but second one is a disaster:

x̃2
1 = .1267E6, x̃2

2 = .1274E6, x̃2
3 = .1282E6,

x̃2
4 = .1289E6, x̃2

5 = .1296E6,∑
x̃2

i = .6408E6 5 · (¯̃x)2 = 5 · .1282E6 = .6410E6

The second formula gives a negative empirical variance!
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CALCULATION OF VARIANCES / 2

Three approaches to calculate the 1/n normalized standard deviation
of a sample:

sd1 = function(x) {

s2 = mean((x - mean(x))^2)

sqrt(s2)

}

sd2 = function(x) {

s2 = mean(x^2) - mean(x)^2

sqrt(s2)

}

sd3 = function(x) {

n = length(x)

s2 = ((n - 1) / n) * var(x)

sqrt(s2)

}
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CALCULATION OF VARIANCES / 3

options("digits" = 20)

sd1(1:9)

## [1] 2.5819888974716112

sd2(1:9)

## [1] 2.5819888974716116

sd3(1:9)

## [1] 2.5819888974716112
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CALCULATION OF VARIANCES / 4

Algorithm Calculation of variance in R (simplified)
1: Input: x ∈ Rn

2: s1 = s2 = 0;
3: for i = 1, ..., n do
4: s1 = s1 + x [i]
5: end for
6: xm← s1

n
7: for i = 1, ..., n do
8: s2 = s2 + (x [i]− xm) ∗ (x [i]− xm)
9: end for

10: return s2
n−1

Gupta 2024
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https://github.com/SurajGupta/r-source/blob/56becd21c75d104bfec829f9c23baa2e144869a2/src/library/stats/src/cov.c

