
Algorithms and Data Structures

Encoding
Machine numbers for R

Learning goals
IEEE 745

Types in C

Floating point numbers in R

Distance



REALS ON A MACHINE

Floating point numbers on a machine don’t correspond to R in a
mathematical sense. They are merely an approximation.

Because there is only a finite number of machine numbers, there
are no arbitrarily small or large numbers and also no arbitrarily
close numbers.

A finite subset of the real numbers cannot be closed w.r.t. rational
operations (+,-,*,:)

We would like to have:

Operations as similar as possible to those in R,

fast and easy implementation on digital computers.

© Algorithms and Data Structures – 1 / 15



MACHINE NUMBERS FOR R : IEEE 754

IEEE (Institute of Electrical and Electronics Engineers) 754 defines
standard representations for floating point numbers in computers.

Characterized by:

Sign bit S ∈ {−1,+1}
Base b >1, common are 2, 8, 10 and 16 (usually 2)

Mantissa of length m, the significant bits / digits

Smallest and largest exponent emin < 0 and emax > 0

Mantissa, exponent and S are coded as bits ui

Representation:

x = S · be · (1 +
m∑

i=1

uib−i)

Thus: a sign bit, an exponent and the significant digits (binary coded
with mantissa bits ui , i = 1, ...,m).

© Algorithms and Data Structures – 2 / 15



IEEE 754

Single precision, 32 bit:

b = 2; u32: sign bit

e is 8 bits u24, ..., u31 (excess coding with bias 127)

m = 23, the first 23 bits are used for the mantissa.

Source: https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Converter: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Example:

sign bit u32 = 0 ⇒ S = +1

e =
∑8

i=1 ui+232i−1 − 127 = 22 + 23 + 24 + 25 + 26 − 127 = −3

mantissa bits: u2 = 1, u1 = u3 = ... = u23 = 0

⇒ x = S · be · (1 +
∑23

i=1 uib−i) = 1 · 2−3 · (1 + 2−2) = 0.15625

© Algorithms and Data Structures – 3 / 15

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://www.h-schmidt.net/FloatConverter/IEEE754.html


IEEE 754 / 2

Double precision, 64 bit:

b = 2; u64: sign bit

e is 11 bits u53, ..., u63 (excess coding with bias 1023)

m = 52

Other representations:
In addition to single and double precision, IEEE 754 also has single
extended and double extended. Here only a minimum number of bits is
required - the exact number of bits is the implementor’s choice.

© Algorithms and Data Structures – 4 / 15



IEEE 754 / 3

Normalized Number:
To guarantee a unique representation, most systems require that the
first bit of the mantissa is ̸= 0. In case of b = 2, the first bit of the
mantissa does not need to be stored in a normalized representation.
Hence, one gains one extra bit of precision (hidden bit).

A number is considered normalized if at least one exponent bit is 1.

x = S · be · (1 +
m∑

i=1

uib−i)

© Algorithms and Data Structures – 5 / 15



IEEE 754 / 4

Special cases:

0: If all mantissa bits and all exponent bits are 0, then x = ±0.

∞: If all mantissa bits are 0 and all exponent bits are 1, then
x = ±∞. This results from the division by 0, or if the result is too
large or too small.

NaN: If all exponent bits are 1 and at least one mantissa bit is 1,
then x = NaN ("Not a Number"). E.g.: 0/0 or ∞−∞.

If all exponent bits are 0, a denormalized number is stored. The
mantissa before the "decimal" point is then 0. In this case:

x = S · bemin ·

(
m∑

i=1

uib−i

)

This allows very small numbers close to 0.

© Algorithms and Data Structures – 6 / 15



IEEE 754 / 5

Binary representation of smallest and largest numbers (IEEE 754,
single precision, 32 bit):

Sign Bit Exponent bits Mantissa bits
Smallest number (normalized) 0 00000001 00000000000000000000000000
Smallest number (denormalized) 0 00000000 00000000000000000000000001
Largest number 0 11111110 11111111111111111111111111

The corresponding values in the decimal system:

exact value scient. notation
Smallest number (normalized) 2−126 1.175494 · 10−38

Smallest number (denormalized) 2−126 · 2−23 1.401298 · 10−45

Largest number 2127 · (1 +
∑23

i=1 2−i) 3.4028235 · 1038

© Algorithms and Data Structures – 7 / 15



TYPES IN C (PROGRAMMING LANGUAGE)

Most programming languages provide several fixed-point and floating
point representations. C has:

Fixed: signed short int, unsigned short int, signed long int, . . .

Float: float, double, long double

The compiler translates them for the CPU. Standard PCs (usually) have
hardware support for floating-point arithmetic in single and double
accuracy. CPUs of different architecture (with the same nominal clock
rate) can strongly differ in computing power.

© Algorithms and Data Structures – 8 / 15



FLOATING POINT NUMBERS IN R

By default, R displays 6 decimal places. This can be adjusted
using the command options(digits = m).

Internally, R calculates all floating point operations in double
precision (IEEE 754, double precision, 64 bit).

.Machine contains all information about the encoding

© Algorithms and Data Structures – 9 / 15



FLOATING POINT NUMBERS IN R / 2

.Machine$double.base # base

## [1] 2

.Machine$double.digits # number of mantissa bits

## [1] 53

.Machine$double.exponent # number of exponent bits

## [1] 11

.Machine$double.xmin # smallest float

## [1] 2.225074e-308

.Machine$double.xmax # largest float

## [1] 1.797693e+308

© Algorithms and Data Structures – 10 / 15



FLOATING POINT NUMBERS IN R / 3

0.1 + 0.2 == 0.3

## [1] FALSE

sprintf (wrapper for the corresponding C function) outputs a
formatted string. Both numbers cannot be represented exactly
(hence, also not their sum):

sprintf("%.20f", 0.1) # decimal notation (20 digits)

## [1] "0.10000000000000000555"

sprintf("%.20f", 0.2)

## [1] "0.20000000000000001110"

sprintf("%.20f", 0.1 + 0.2)

## [1] "0.30000000000000004441"

This problem can be avoided by using the comparison with
tolerance all.equal instead of the exact comparison ==.

all.equal(0.1 + 0.2, 0.3)

## [1] TRUE

© Algorithms and Data Structures – 11 / 15



DISTANCE

The machine floats M are not uniformly distributed in the domain.
The interval [bi−1, bi ] contains the same quantity of numbers as the
interval [bi , bi+1], even though the latter is b times as big.

© Algorithms and Data Structures – 12 / 15



DISTANCE / 2

The distance between the representable numbers is important:

The smallest numbers around 0 are ±bemin−m.

The smallest number greater than 1 is 1 + b−m

(e = 0, u0 = . . . = um−1 = 0 and um = 1).

The largest real number less than 1 is 1 − b−m−1

(e = −1, u0 = 0 and u1 = . . . = um = 1).

This results in important constants called "machine epsilons":

ϵmin = b−m−1 ϵmax = b−m

For numbers greater than bm+1, the distance between numbers is
> 1 and even integer parts are no longer exact.

© Algorithms and Data Structures – 13 / 15



DISTANCE / 3

Machine epsilons can be used to estimate the distance between the
numbers in the entire domain.

In general: Around a number x ̸= 0, the relative distance between
machine numbers is approximately ϵmax, and the absolute distance is
thus x · ϵmax (approximately, since neither x nor the product with ϵmax

need to be representable).

The estimate with ϵmax is conservative and therefore usually preferred.

From now on, we define ϵm := ϵmax.

This machine epsilon is our minimal accuracy.

© Algorithms and Data Structures – 14 / 15



DISTANCE / 4

options(digits = 20)

1 + 1 / (2^53)

## [1] 1

1 + 1 / (2^52)

## [1] 1.0000000000000002

1 / (2^52)

## [1] 2.2204460492503131e-16

.Machine$double.eps

## [1] 2.2204460492503131e-16

© Algorithms and Data Structures – 15 / 15


