
Algorithms and Data Structures

Encoding
Machine numbers for Z

Learning goals
Signed magnitude representation

One’s complement

Two’s complement

Integer overflow

MACHINE NUMBERS FOR Z

There are different options to represent positive and negative integers
(Z) by a computer:

Signed magnitude representation

Excess encoding

One’s complement

Two’s complement

Each representation has advantages and disadvantages regarding:

Symmetry of the representable value range

Uniqueness of representation

Execution of arithmetic operations

© Algorithms and Data Structures – 1 / 18

SIGNED MAGNITUDE REPRESENTATION

If the 32nd bit is reserved for the sign on a 32-bit computer, 31 bits are
available for encoding the absolute value of the number.

Bit ui

sign 31 . . . 8 7 6 5 4 3 2 1
-1 1 0 . . . 0 0 0 0 0 0 0 1
0 1/0 0 . . . 0 0 0 0 0 0 0 0
1 0 0 . . . 0 0 0 0 0 0 0 1
51 0 0 . . . 0 0 1 1 0 0 1 1

230 . . . 27 26 25 24 23 22 21 20

The number is then given by: x = (−1)u32
∑31

i=1 ui2i−1.
The sign bit u32 = 1 indicates negative numbers.

© Algorithms and Data Structures – 2 / 18

SIGNED MAGNITUDE REPRESENTATION / 2

Covered number range in 32-bit: −231 + 1 to 231 − 1

Very good readability

Representation of zero not unique (e.g. problem with equality
check: −0 ̸= 0)

Addition/subtraction is cumbersome, since the sign bit must be
handled separately. You cannot simply write and add two numbers
below each other (but this would be desirable!).

Example 7 − 3 in 4-bit system:

0111 |(7)
+ 1011 |(-3)

(1)0010 |(2)

But 00102 ̸= 410. Implementation of addition is complicated.

© Algorithms and Data Structures – 3 / 18

MACHINE NUMBERS FOR Z: EXCESS CODE
An option without a sign bit can be achieved by shifting the value
ranges: All values are shifted by a bias (so that they are not negative).

Bit ui

32 31 . . . 8 7 6 5 4 3 2 1
−231 0 0 . . . 0 0 0 0 0 0 0 0

-1 0 1 . . . 1 1 1 1 1 1 1 1
0 1 0 . . . 0 0 0 0 0 0 0 0
1 1 0 . . . 0 0 0 0 0 0 0 1

231 − 1 1 1 . . . 1 1 1 1 1 1 1 1
231 230 . . . 27 26 25 24 23 22 21 20

The coded number is calculated according to: x =
∑32

i=1 ui2i−1 − 231.

Covered number range in 32-bit: −231 to 231 − 1

Uniqueness of zero

No simple addition/subtraction of binary numbers

© Algorithms and Data Structures – 4 / 18

ONE’S COMPLEMENT

A negative number −z is represented by the bitwise complement of the
corresponding positive number z.

Bit ui

32 31 . . . 8 7 6 5 4 3 2 1
-51 1 1 . . . 1 1 0 0 1 1 0 0
-1 1 1 . . . 1 1 1 1 1 1 1 0
-0 1 1 . . . 1 1 1 1 1 1 1 1
0 0 0 . . . 0 0 0 0 0 0 0 0
1 0 0 . . . 0 0 0 0 0 0 0 1
51 0 0 . . . 0 0 1 1 0 0 1 1

−(231 − 1) 230 . . . 27 26 25 24 23 22 21 20

The 32nd bit marks negative numbers again. The coded number is
given by: x =

∑31
i=1 ui2i−1 − u32(231 − 1).

© Algorithms and Data Structures – 5 / 18

ONE’S COMPLEMENT / 2

Let x̃ be the bitwise complement of x . We check the correctness of the
formula:

x̃ =
31∑

i=1

ũi2i−1 − ũ32(231 − 1)

=
31∑

i=1

(1 − ui)︸ ︷︷ ︸
complement

2i−1 − (1 − u32)︸ ︷︷ ︸
complement

(231 − 1)

=
31∑

i=1

2i−1 − (231 − 1)−
31∑

i=1

ui2i−1 + u32(231 − 1)

= −1 + 231 − (231 − 1)− (
31∑

i=1

ui2i−1 − u32(231 − 1)) = −x

© Algorithms and Data Structures – 6 / 18

ONE’S COMPLEMENT / 3

Covered number range in 32-bit: −231 + 1 to 231 − 1.

Very easy conversion from positive to negative and vice versa by
inverting all bits.

The representation of zero is not unique.

Addition / subtraction works better here than in the signed
magnitude representation. But it is still not trivial, since the sum
needs to be corrected (by subsequently adding the carry bit as a
1).

Example: 7 − 3 in 4-bit system:

0111 |(7)
+ 1100 |(-3)

(1)0011 | Carry-Bit
+ 0001 | add 1

0100 |(4)

© Algorithms and Data Structures – 7 / 18

ONE’S COMPLEMENT / 4

Why adding a 1?

Because of the 0 being represented twice, a 1 must be added
when overflowing the 0, so that the result is correct.

© Algorithms and Data Structures – 8 / 18

TWO’S COMPLEMENT

With the two’s complement, negative numbers are formed by
determining the one’s complement and adding an additional 1.

Example: conversion of −5110:

Bit ui

32 31 . . . 8 7 6 5 4 3 2 1
| − 5110| 0 0 . . . 0 0 1 1 0 0 1 1

invert 1 1 . . . 1 1 0 0 1 1 0 0
add 1 1 1 . . . 1 1 0 0 1 1 0 1

−231 230 . . . 27 26 25 24 23 22 21 20

© Algorithms and Data Structures – 9 / 18

TWO’S COMPLEMENT / 2

Example: two’s complement

Bit ui

32 31 . . . 8 7 6 5 4 3 2 1
−231 1 0 . . . 0 0 0 0 0 0 0 0
-51 1 1 . . . 1 1 0 0 1 1 0 1
-1 1 1 . . . 1 1 1 1 1 1 1 1
0 0 0 . . . 0 0 0 0 0 0 0 0
1 0 0 . . . 0 0 0 0 0 0 0 1
51 0 0 . . . 0 0 1 1 0 0 1 1

231 − 1 0 1 . . . 1 1 1 1 1 1 1 1
−231 230 . . . 27 26 25 24 23 22 21 20

The coded number is then: x =
∑31

i=1 ui2i−1 − u32231.

© Algorithms and Data Structures – 10 / 18

TWO’S COMPLEMENT / 3

Covered number range in 32-bit: −231 to 231 − 1

Not easy to read anymore. But big advantages for the computer.

Unique representation of 0.

Addition / subtraction works as desired. As long as you stay in the
number range, you can simply write and add two numbers below
each other (the carry bit is ignored).

Example: 7 − 3 in a 4-bit system:

0111 |(7)
+ 1101 |(-3)

(1)0100 |(4)

© Algorithms and Data Structures – 11 / 18

TWO’S COMPLEMENT / 4

The carry bit can simply be ignored here, since the representation of
the 0 is unique:

Caution when leaving the number range:

Example: 0011 (3) + 0101 (5) = 1000 (-8)

© Algorithms and Data Structures – 12 / 18

INTEGER OVERFLOW

Caution: Arithmetic operations can cause an overflow. This is a
common programming error in languages like C and can lead to
undefined behavior (e.g. wrap around).

Example: (231 − 1) + 1.
In a 32-bits two’s complement representation (231 − 1) + 1 would be
outside of the covered number range, since (231 − 1) is the largest
possible number that can be represented. Adding 1 results in −231 due
to an integer overflow.

(231 − 1) 01111111 11111111 11111111 11111111
+1 00000000 00000000 00000000 00000001

(−231) 10000000 00000000 00000000 00000000

© Algorithms and Data Structures – 13 / 18

INTEGER OVERFLOW / 2

Excerpt from Wikipedia "Integer Overflow":

On 30 April 2015, the Federal Aviation Authority announced it will order
Boeing 787 operators to reset its electrical system periodically, to avoid
an integer overflow which could lead to loss of electrical power and ram
air turbine deployment, and Boeing is going to deploy a software update

in the fourth quarter.

When Donkey Kong breaks on level 22 it is because of an integer
overflow in its time/bonus. Donkey Kong takes the level number you’re

on, multiplies it by 10 and adds 40. When you reach level 22 the
time/bonus number is 260 which is too large for its 8-bit 256 value

register so it resets itself to 0 and gives the remaining 4 as the
time/bonus - not long enough to complete the level.

© Algorithms and Data Structures – 14 / 18

MACHINE NUMBERS FOR Z IN R

In R, integers are encoded in 32-bit (also in 64-bit R!) by the two’s
complement.

.Machine$integer.max

[1] 2147483647

2^31 - 1

[1] 2147483647

© Algorithms and Data Structures – 15 / 18

MACHINE NUMBERS FOR Z IN R / 2

intToBits(-51L)

[1] 01 00 01 01 00 00 01 01 01 01 01 01 01 01 01 01 01 01

[19] 01 01 01 01 01 01 01 01 01 01 01 01 01 01

intToBits(51L)

[1] 01 01 00 00 01 01 00 00 00 00 00 00 00 00 00 00 00 00

[19] 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Caution: In R the operation x^y always results in the type 'numeric'!

intToBits(2L^31L - 1L)

[1] 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

[19] 01 01 01 01 01 01 01 01 01 01 01 01 01 00

© Algorithms and Data Structures – 16 / 18

MACHINE NUMBERS FOR Z IN R / 3

In R, integer overflows are caught and set to NA.

.Machine$integer.max + 1

[1] 2147483648

str(.Machine$integer.max + 1)

num 2.15e+09

str(.Machine$integer.max + 1L)

Warning in .Machine$integer.max + 1L: NAs produced by

integer overflow

int NA

© Algorithms and Data Structures – 17 / 18

R IN 64-BIT SYSTEMS

In 2010, the 64-bit version of R was released.

But: integers are still encoded in 32-bit.

The largest integer in R is thus about 2 billion.

When indexing vectors longer than about 2 billion, R uses a trick:

By using floating point numbers in double precision, integers
can be represented reliably within the value range
(−253, 253).
Beyond that, not all integers are covered!
In R you can index with floating point numbers:

c(1,2,3)[1.7]

[1] 1

© Algorithms and Data Structures – 18 / 18

