ALGORITHMIC FAIRNESS

× 0 0 × × ×

- Machine learning (ML) based systems increasingly permeate society
- Models can replicate existing injustices or introduce new ones
- Automated decisions can disproportionately harm vulnerable individuals

ALGORITHMIC FAIRNESS

Medicine

Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis

www.pnas.org/content/117/23/12592

Criminal Justice

Machine Bias

There's software used across the country to predict future criminals. And it's biasec against blacks.

I Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

https://www.propublica.org/article/machine-bias-riskassessments-in-criminal-sentencing × × ×

Hiring

OBJECTIVE OR BIASED					
On the questionable use of Artificial Intelligence for job applications					

https://interaktiv.br.de/ki-bewerbung/en/

Search Results

IDEAS + TECH BIAS

Google Has a Striking History of Bias Against Black Girls

37 SAFIYA NOBLE

https://time.com/5209144/google-search-engine-algorithm-biasracism/

SOURCES OF BIAS

× 0 0 × × ×

Adapted from S. Mitchell et al., Algorithmic fairness: Choices, assumptions, and definitions, 2021

HISTORICAL BIAS

- Historical data often contains biases, e.g. under-representation of minority groups
- Models can pick up existing biases
- As a result, biases are perpetuated into the future

Turkish 👻	י (י י	English 👻		
O bir dokto hemşire. ₅ar	r. O bir	He is a doct a nurse.	tor. She is	
	Twitter: math_rache			

REPRESENTATION BIAS

- Over- or under-representation of specific sub-population can lead to models that only predict well for majority groups
- Models need to be evaluated across a representative sample of the target population
- Example: We can only know if a person paid back a loan if we gave out a loan in the first place

× 0 0 × × ×

OTHER SOURCES OF BIAS

- Measurement Bias Difference in how a given variable is measured in different sub-populations
 - Increased policing in some post codes lead to more prior arrests
 - Better data quality between different hospitals
- Model Bias Biases introduced during modelling, e.g. due to under-specified models
 - Models make more errors for darker skin tones due to insufficient data
 - Models pick up spurious correlations in the data
- Feedback Loops Model decisions shape data collected in the future
 - Lead to representation bias if e.g. sub-populations are systematically excluded
 - People and ML systems 'pick up' miss-representation from search engines.

Mehrabi et al., A Survey on Bias and Fairness in Machine Learning, 2020

TYPES OF HARMS

If not accounted for, biases can lead to several harms

- Allocation: A ressource is allocated unevenly across individuals
- Quality-of-service: Systems fail disproportionately for certain groups of individuals.
- Stereotyping: Systems re-inforce existing stereotypes
- Denigration: Systems are offensive towards individuals
- Representation: Under- or overrepresentation of certain groups

Twitter: jackyalcine 29.06.2015

× × 0 × × ×

AUDITING MODELS FOR POTENTIAL HARMS

For a more formal treatment, we introduce additional notation:

- **Protected attribute:** A protected *class* or attribute w.r.t which models should be fair.
 - We denote this protected attribute A with **a**.
 - For simplicity, we assume that $\mathbf{a}^{(i)} \in \mathcal{A} = \{0, 1\}$ is a binary variable.
- Decision space: To differentiate between a model's prediction $\hat{f}(\mathbf{x})$ and a decision derived from this prediction, we denote the decision with **d**. For simplicity, we assume $\mathbf{d}^{(i)} \in \delta = \{0, 1\}$
- This notation can be extended to multi-class or regression outcomes as well as more complex protected attributes, e.g. that account for non-binary protected classes or *intersectional notions*, e.g. race ∧ gender.

× 0 0 × × ×

MATHEMATICAL NOTIONS OF BIAS - OVERVIEW

NO FAIRNESS THROUGH UNAWARENESS

A naive proposal to reduce harms from ML models is to simply remove the protected attribute. **But:** It's not that simple - models can pick up the information through other variables!

× × 0 × × ×

 \rightarrow The model directly uses race as a feature.

 \rightarrow The model picks up information about the race through the proxy-variable ZIP-code.

GROUP FAIRNESS DEFINITIONS

Several fairness definitions based on differences between protected groups have been proposed.

• Statistical Parity: The chance to get the favourable outcome is equal across two groups. This is also called *demographic parity*.

$$P(\hat{Y} = 1 | A = 0) = P(\hat{Y} = 1 | A = 1)$$

• Equalized Opportunity: The chance to *correctly* be assigned the favourable outcome is independent of the protected attribute.

$$P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$$

• Accuracy Parity: The accuracy is equal in both groups.

$$P(\hat{Y} = 1 | A = 0, Y = 1) + P(\hat{Y} = 0 | A = 0, Y = 0) = P(\hat{Y} = 1 | A = 1, Y = 1) + P(\hat{Y} = 0 | A = 1, Y = 0)$$

PERSPECTIVE: BASED ON PREDICTED OUTCOME

- Statistical parity requires equality in the predicted outcome. E.g. hire candidates **independent** of qualification.
- If the underlying qualifications are not distributed equally across groups, we need to sacrifice *utility* to achieve statistical parity.

 \rightarrow Enforcing equal positive rates might require hiring unqualified candidates.

Danger: If the bias comes from the real world (e.g. societal bias), enforcing statistical parity can also lead to adverse effects in the long term.

PERSPECTIVE: BASED ON TRUE & PREDICTED OUTCOME

- Other fairness notions require equality of some error notions, e.g. false positive rates. E.g. hire *qualified* candidates at equal rates across groups.
- Error based notions are often more intuitive and easy to communicate.
- Can help to idenitify representation or model bias.
- Error based notions do not account for systemic injustices in the world if e.g. labels are biased, we can still be *fair* according to error-based notions.

× × 0 × × ×

REMINDER: CONFUSION MATRIX

The confusion matrix is a 2 \times 2 contingency table of predictions \hat{y} and true labels *y*. Several evaluation metrics can be derived from a confusion matrix:

	Actual Positive	Actual Negative	
Predicted Positive	True positive (TP)	False positive (FP, Type I error)	Precision (P) = Positive predictive value = #TP #TP + #FP
Predicted Negative	False negative (FN, Type II error)	True negative (TN)	Negative predictive value = $\frac{\#TN}{\#FN + \#TN}$
	Sensitivity = Recall (R) = True positive rate (tpr) = $\frac{\#TP}{\#TP + \#FN}$	Specificity = True negative rate (tnr) = #TN #FP + #TN	Accuracy = $\frac{\text{#TP + \#TN}}{n}$ Error rate = $\frac{\text{#FN + \#FP}}{n}$

× × 0 × ×

 \rightarrow Many fairness metrics can be expressed as entries of the confusion matrix

FAIRNESS TENSOR

We can represent labels & predictions as a *fairness tensor* (Kim et al., 2020). Fairness tensors are 3-dimensional, stacked confusion matrices:

$$Z = \left[\begin{bmatrix} TP_1 & FP_1 \\ FN_1 & TN_1 \end{bmatrix}^{A=1}, \begin{bmatrix} TP_0 & FP_0 \\ FN_0 & TN_0 \end{bmatrix}^{A=0} \right]$$

For $z = (TP_1, FN_1, FP_1, TN_1, TP_0, FN_0, FP_0, TN_0)^T / N$, we can express a large variety of fairness metrics as linear $\phi(x) = A \cdot z$ or quadratic functions $\phi(x) = z^T \cdot B \cdot z$ by choosing an appropriate matrix A or B.

Example:

We choose $A = (N_1, 0, N_1, 0, N_0, 0, N_0, 0)/N$, where N_a is the sum of entries in the confusion matrix for protected group *a*. We can now express **statistical parity** as $A \cdot z = 0$.

INCOMPATIBILITY OF FAIRNESS METRICS

- Some fairness metrics cannot be jointly satisfied.
- E.g. simultaneously satisfying equal TPR, FPR, and FNR.
- Question: how can we show the above point formally?
- Answer:
 - Using the fairness tensor *z* and *A*_{*TPR*}, *A*_{*FPR*}, *A*_{*FNR*} to encode the fairness metrics.
 - Making the fairness metrics compatible needs z to fufill

$$\begin{bmatrix} A_{TPR} \\ A_{FPR} \\ A_{FNR} \end{bmatrix} \cdot z = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• If no valid solution *z* exists, the metrics are incompatible.

FAIRNESS METRICS - CLOSING THOUGHTS

- Statistical group fairnes metrics require translating ethical considerations of what is *fair* into mathematical formulas.
- To draw meaningful conclusions, we need to evaluate fairness metrics on a **representative** data set.
- Fairness metrics reduce a wide variety of important considerations into a single number – they are not designed to guarantee that a system is fair.
- Incompatibility between fairness metrics implies that we might need trade-offs between fairness metrics.

PREVENTING & MITIGATING HARMS - DOCUMENTATION

- Idea: prevent harms of ML models by improving documentations of models & datasets.
- Motivation: usage of datasets or models outside of their intended use can often lead to harm, even if the models are carefully validated.
- Dataset documentation Includes information on the dataset, sampling mechanisms and intended use.
- Model documentation Includes information about the model, used data and hyperparameters.
- Fairness reports Include information about performed fairness audits.

PREVENTING & MITIGATING HARMS - BIAS MITIGATION

Several bias mitigation techniques have been proposed:

- **Pre-processing**: Transform data to make subsequently trained models fairer.
- In-processing: Learn a model that directly incorporates fairness constraints.
- **Post-processing**: Adapt model predictions to satisfy fairness constraints.

Example: Re-weighing (Kamiran, 2012) proposes to use sample weights that are inverse to the frequency of labels and predictions in the data.

0 0 X X 0 X X

PREVENTING & MITIGATING HARMS - RECOURSE

Fair treatment of individuals subject to a decision making systems decisions can often not only be achieved solely through algorithmic means but requires recourse, accountability & interpretability.

- Accountability: Automated systems will make errors developers need to ensure that humans responsible for addressing such errors exist and have the means to address such errors.
- Interpretability: Interpretability techniques can help to identify possible problems in the data or the model, e.g. spurious correlations picked up by the model.
- **Recourse**: Individuals subject to automated decisions should have access to an explanation on how the decision was made and what steps can be taken to address unfavourable predictions.

× < 0 × × ×

FURTHER CONSIDERATIONS

- Intersectionality: Fairness considerations should often hold across intersectional groups, e.g. *race* ∧ *gender*.
- Intervention design: Instead of ensuring a given intervention is fair, it can often be helpful to consider the intervention we wish to deploy.

Example: Instead of penalizing defendants for not showing up to court, provide them with means of transportation.

- Stakeholder participation: Developing ML models should take the perspective of all stakeholders such as the individuals affected by the intervention and advocacy groups.
- Long-term perspective: Existing metrics only consider the short-term and do not take its long-term impact into account. This might lead to adverse effects in the long-term.

× × × ×

RESOURCES

- Fairness and Machine Learning Limitations and Opportunities, Barocas et al., 2019
- Algorithmic Fairness: Choices, Assumptions, and Definitions, Mitchell et al., 2021
- A Survey on Bias and Fairness in Machine Learning, Mehrabi et al., 2020
- An Introduction to Algorithmic Fairness, H.J.P Weerts, 2021
- FACT: A Diagnostic for Group Fairness Trade-offs, Kim et al., 2020
- Data preprocessing techniques for classification without discrimination, Kamiran et al., 2012
- Fairness Through Awareness, Dwork et al., 2012

× 0 0 × 0 × × ×