
THE ONLINE LEARNER

In the following, we will consider a first (online) learner for online learning
problems. Note that a learner can be defined in a formal way.

Indeed, a learner within the basic online learning protocol, say Algo, is a
function

A :
T⋃

t=1

(Z ×A)t → A

that returns the current action based on (the loss and) the full history of
information so far:

aAlgot+1 = A(z1, a
Algo

1 , z2, a
Algo

2 , . . . , zt , a
Algo
t ; ).

In the extended online learning scenario, where the environmental data
consists of two parts, zt = (z(1)

t , z(2)
t ), and the first part is revealed

before the action in t is performed, we have that

aAlgot+1 = A(z1, a
Algo

1 , z2, a
Algo

2 , . . . , zt , a
Algo
t , z(1)

t+1; )
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THE ONLINE LEARNER

It will be desired that the online learner admits a cheap update formula,
which is incremental, i.e., only a portion of the previous data is necessary
to determine the next action.

For instance, there exists a function u : Z ×A → A such that

A(z1, a
Algo

1 , z2, a
Algo

2 , . . . , zt , a
Algo
t ; ) = u(zt , a

Algo
t ).
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FOLLOW THE LEADER ALGORITHM

A simple algorithm to tackle online learning problems is the Follow the leader
(FTL) algorithm.

The algorithm takes as its action aFTL

t ∈ A in time step t ≥ 2, the element which
has the minimal cumulative loss so far over the previous t − 1 time periods:

aFTL

t ∈ argmin
a∈A

t−1∑
s=1

(a, zs).

(Technical side note: if there are more than one minimum, then one of them is chosen. Moreover, aFTL1 is arbitrary. )

Interpretation: The action aFTL

t is the current
”leader” of the actions in A in time step t , as
it has the smallest cumulative loss (error) so far.
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FOLLOW THE LEADER ALGORITHM

aFTL

t ∈ argmin
a∈A

t−1∑
s=1

(a, zs).

Note that the action selection rule of FTL is natural and has much in common with
the classical batch learning approaches based on empirical risk minimization.

This results in a first issue regarding the computation time for the action, because
the longer we run this algorithm, the slower it becomes (in general) due to the
growth of the seen data.
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FTL: A HELPFUL LEMMA
Lemma: Let aFTL1 , aFTL2 , . . . be the sequence of actions used by the FTL
algorithm for the environmental data sequence z1, z2, . . . .

Then, for all ã ∈ A it holds that

RFTL
T (ã) =

∑T

t=1

(
(aFTLt , zt)− (ã, zt)

)
≤

∑T

t=1

(
(aFTLt , zt)− (aFTLt+1, zt)

)
=

∑T

t=1
(aFTLt , zt)−

∑T

t=1
(aFTLt+1, zt).

In particular,

RFTL
T ≤

∑T

t=1
(aFTLt , zt)−

∑T

t=1
(aFTLt+1, zt)

Interpretation: the regret of the FTL algorithm is bounded by the difference of
cumulated losses of itself compared to its one-step lookahead cheater version.
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FTL: A HELPFUL LEMMA
Proof: In the following, we denote aFTL1 , aFTL2 , . . . simply by a1, a2, . . .

First, note that the assertion can be restated as follows

RFTL
T (ã) =

T∑
t=1

((at , zt)− (ã, zt)) ≤
T∑

t=1

((at , zt)− (at+1, zt))

⇔
T∑

t=1

(at+1, zt) ≤
T∑

t=1

(ã, zt).

Hence, we will verify the inequality
∑T

t=1 (at+1, zt) ≤
∑T

t=1 (ã, zt), which
implies the assertion.

⇝ This will be done by induction over T .
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FTL: A HELPFUL LEMMA

Reminder: aFTLt ∈ argmin
a∈A

t−1∑
s=1

(a, zs).

Initial step: T = 1. It holds that

T∑
t=1

(at+1, zt) = (a2, z1) =

(
argmin

a∈A
(a, z1), z1

)
= min

a∈A
(a, z1) ≤ (ã, z1)

(
=

∑T

t=1
(ã, zt)

)
for all ã ∈ A.

Induction Step: T − 1 → T . Assume that for any ã ∈ A it holds that∑T−1

t=1
(at+1, zt) ≤

∑T−1

t=1
(ã, zt).

Then, the following holds as well (adding (aT+1, zT ) on both sides)∑T

t=1
(at+1, zt) ≤ (aT+1, zT ) +

∑T−1

t=1
(ã, zt), ∀ã ∈ A.
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FTL FOR OQO PROBLEMS

One popular instantiation of the online learning problem is the problem of online
quadratic optimization (OQO).

In its most general form, the loss function is thereby defined as

(at , zt) =
1
2
||at − zt ||22 ,

where A,Z ⊂ Rd .

Proposition: Using FTL on any online quadratic optimization problem with
A = Rd and V = sup

z∈Z
||z||2, leads to a regret of

RFTL

T ≤ 4V 2 (log(T ) + 1).

This result is satisfactory for three reasons:
1 The regret is definitely sublinear, that is, RFTL

T = o(T ).
2 We just have a mild constraint on the online quadratic optimization

problem, namely that ||z||2 ≤ V holds for any possible environmental data
instance z ∈ Z.

3 The action aFTL

t is simply the empirical average of the environmental data
seen so far: aFTL

t = 1
t−1

∑t−1
s=1 zs.
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