FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- \bullet To be more precise, let for $t \geq 1$

$$
a_t^{\texttt{FFRL}} \in \underset{a \in \mathcal{A}}{\text{arg min}} \left(\psi(a) + \sum\nolimits_{s=1}^{t-1} \left(a, z_s \right) \right),
$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{FTL} in time step t is called the **Follow the regularized leader** (FTRL) algorithm.

X X

FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- \bullet To be more precise, let for $t \geq 1$

$$
a_t^{\texttt{FTRL}} \in \underset{a \in \mathcal{A}}{\text{arg min}} \left(\psi(a) + \sum\nolimits_{s=1}^{t-1} \left(a, z_s \right) \right),
$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{FTL} in time step t is called the **Follow the regularized leader** (FTRL) algorithm.

• Interpretation: The algorithm predicts a_t as the element in A , which minimizes the regularization function plus the cumulative loss so far over the previous $t - 1$ time periods.

X X

FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- \bullet To be more precise, let for $t \geq 1$

$$
a_t^{\texttt{FTRL}} \in \underset{a \in \mathcal{A}}{\text{arg min}} \left(\psi(a) + \sum\nolimits_{s=1}^{t-1} \left(a, z_s \right) \right),
$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{FTL} in time step t is called the **Follow the regularized leader** (FTRL) algorithm.

- Interpretation: The algorithm predicts a_t as the element in A , which minimizes the regularization function plus the cumulative loss so far over the previous $t - 1$ time periods.
- Obviously, the behavior of the FTRL algorithm is depending heavily on the choice of the regularization function ψ . If $\psi \equiv 0$, then FTRL equals FTL.

 \times \times

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$
\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n L(y^{(i)}, \theta) + \lambda \psi(\theta),
$$

where $\lambda \geq 0$ is some regularization parameter.

X X

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$
\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n L(y^{(i)}, \theta) + \lambda \psi(\theta),
$$

where $\lambda \geq 0$ is some regularization parameter.

Here, the regularization function is part of the whole objective function, which the learner seeks to minimize.

 $\times\overline{\times}$

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$
\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n L(y^{(i)}, \theta) + \lambda \psi(\theta),
$$

where $\lambda \geq 0$ is some regularization parameter.

- Here, the regularization function is part of the whole objective function, which the learner seeks to minimize.
- However, in the online learning scenario the regularization function does (usually) not appear in the regret the learner seeks to minimize, but the regularization function is only part of the action/decision rule at each time step.

 $\times\overline{\times}$

REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

Lemma: Let $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$ be the sequence of actions coming used by the FTRL algorithm for the environmental data sequence z_1, z_2, \ldots . Then, for all $\tilde{a} \in \mathcal{A}$ we have

$$
A_{\mathcal{T}}^{\texttt{FTRL}}(\tilde{\mathbf{a}}) = \sum_{t=1}^{\mathcal{T}} \left(\left(\tilde{\mathbf{a}}_t^{\texttt{FTRL}}, z_t \right) - \left(\tilde{\mathbf{a}}, z_t \right) \right)
$$

$$
\leq \psi(\tilde{\mathbf{a}}) - \psi(\tilde{\mathbf{a}}_1^{\texttt{FTRL}}) + \sum_{t=1}^{\mathcal{T}} \left(\left(\tilde{\mathbf{a}}_t^{\texttt{FTRL}}, z_t \right) - \left(\tilde{\mathbf{a}}_{t+1}^{\texttt{FTRL}}, z_t \right) \right).
$$

X X

REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

Lemma: Let $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$ be the sequence of actions coming used by the FTRL algorithm for the environmental data sequence z_1, z_2, \ldots . Then, for all $\tilde{a} \in \mathcal{A}$ we have

$$
A_{\mathcal{T}}^{\texttt{FTRL}}(\tilde{\mathbf{a}}) = \sum_{t=1}^{\mathcal{T}} \left(\left(\tilde{\mathbf{a}}_t^{\texttt{FTRL}}, z_t \right) - \left(\tilde{\mathbf{a}}, z_t \right) \right) \\ \leq \psi(\tilde{\mathbf{a}}) - \psi(\tilde{\mathbf{a}}_1^{\texttt{FTRL}}) + \sum_{t=1}^{\mathcal{T}} \left(\left(\tilde{\mathbf{a}}_t^{\texttt{FTRL}}, z_t \right) - \left(\tilde{\mathbf{a}}_{t+1}^{\texttt{FTRL}}, z_t \right) \right).
$$

 \times \times

- *Interpretation*: the regret of the FTRL algorithm is bounded by the difference of cumulated losses of itself compared to its one-step lookahead cheater version and an additional regularization difference term.
- \Rightarrow We have seen an analogous result for FTL!

(The proof is similar.)

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^T z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$
\psi(a) = \frac{1}{2\eta} ||a||_2^2 = \frac{a^{\top}a}{2\eta},
$$

where η is some positive scalar, the *regularization magnitude.*

 \times \times

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^T z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$
\psi(a) = \frac{1}{2\eta} ||a||_2^2 = \frac{a^{\top} a}{2\eta},
$$

where η is some positive scalar, the *regularization magnitude.*

It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$
a_t^{\text{FTRL}} = -\eta \sum_{s=1}^{t-1} z_s.
$$

 \times \times

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^T z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$
\psi(a) = \frac{1}{2\eta} ||a||_2^2 = \frac{a^{\top} a}{2\eta},
$$

where η is some positive scalar, the *regularization magnitude.*

It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$
a_t^{\text{FTRL}} = -\eta \sum_{s=1}^{t-1} z_s.
$$

Hence, in this case we have for the FTRL algorithm the following update rule

$$
a_{t+1}^{F\text{TRL}} = a_t^{F\text{TRL}} - \eta z_t, \qquad t = 1, \ldots, T-1.
$$

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^T z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$
\psi(a) = \frac{1}{2\eta} ||a||_2^2 = \frac{a^{\top} a}{2\eta},
$$

where η is some positive scalar, the *regularization magnitude.*

It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$
a_t^{\texttt{FTRL}} = -\eta \sum\nolimits_{s=1}^{t-1} z_s.
$$

Hence, in this case we have for the FTRL algorithm the following update rule

$$
a_{t+1}^{F\text{TRL}} = a_t^{F\text{TRL}} - \eta z_t, \qquad t = 1, \ldots, T-1.
$$

Interpretation: $-z_t$ is the *direction* in which the update of a_t^{FTRL} to a_{t+1}^{FTRL} is conducted with *step size* η in order to reduce the loss.

Proposition: Using the FTRL algorithm with the squared L2-norm regularization on any online linear optimization (OLO) problem with $\mathcal{A}\subset\mathbb{R}^d$ leads to a regret of FTRL with respect to any action $\widetilde{\mathsf{a}}\in\mathcal{A}$ of

$$
R_{T}^{FTRL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}.
$$

 \times \times

Proposition: Using the FTRL algorithm with the squared L2-norm regularization on any online linear optimization (OLO) problem with $\mathcal{A}\subset\mathbb{R}^d$ leads to a regret of FTRL with respect to any action $\widetilde{\mathsf{a}}\in\mathcal{A}$ of

$$
R_T^{FTRL}(\tilde{\mathbf{a}}) \leq \frac{1}{2\eta} ||\tilde{\mathbf{a}}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2.
$$

 \times \times

- We will show the result only for the case $\mathcal{A} = \mathbb{R}^d.$
- For the more general case, where $\mathcal A$ is a strict subset of $\mathbb R^d,$ we need a slight modification of the update formula above:

$$
a_t^{\text{FTEL}} = \Pi_{\mathcal{A}}\big(-\eta \sum_{i=1}^{t-1} z_i\big) = \underset{a \in \mathcal{A}}{\text{arg min}} \left\|a - \eta \sum_{i=1}^{t-1} z_i\right\|_2^2.
$$

In words, the action of the FTRL algorithm has to be projected onto the set A. Here, $\Pi_A : \mathbb{R}^d \to A$ is the projection onto A.

(The proof is essentially the same, except that the Cauchy-Schwarz inequality is used in between.)

Proof:

$$
\begin{aligned} \textbf{Reminder (1):} \quad & R_{\textit{T}}^{\texttt{FTRL}}(\tilde{\textit{a}}) \leq \psi(\tilde{\textit{a}}) - \psi(a_1^{\texttt{FTRL}}) + \sum_{t=1}^{\textit{T}} \left(\left(a_t^{\texttt{FTRL}}, z_t\right) - \left(a_{t+1}^{\texttt{FTRL}}, z_t\right) \right). \\ \textbf{Reminder (2):} \quad & a_{t+1}^{\texttt{FTRL}} = a_t^{\texttt{FTRL}} - \eta \, z_t, \qquad t = 1, \ldots, \textit{T} - 1. \end{aligned}
$$

 $\bm{\times}$ $\times\overline{\times}$

For sake of brevity, we write a_1, a_2, \ldots for $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$

Proof:

$$
\begin{aligned}\n\textbf{Reminder (1):} \quad & R_{\textit{T}}^{\texttt{FTRL}}(\tilde{\textbf{a}}) \leq \psi(\tilde{\textbf{a}}) - \psi(a_1^{\texttt{FTRL}}) + \sum_{t=1}^{\textit{T}} \left(\left(a_t^{\texttt{FTRL}}, z_t \right) - \left(a_{t+1}^{\texttt{FTRL}}, z_t \right) \right). \\
& \textbf{Reminder (2):} \quad a_{t+1}^{\texttt{FTRL}} = a_t^{\texttt{FTRL}} - \eta \, z_t, \qquad t = 1, \ldots, \textit{T} - 1.\n\end{aligned}
$$

- For sake of brevity, we write a_1, a_2, \ldots for $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$
- \bullet With this,

$$
B_{T}^{FfRL}(\tilde{a}) \leq \psi(\tilde{a}) - \psi(a_{1}) + \sum_{t=1}^{T} ((a_{t}, z_{t}) - (a_{t+1}, z_{t}))
$$
 (Reminder (1))
\n
$$
\leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \sum_{t=1}^{T} (a_{t}^{\top} z_{t} - a_{t+1}^{\top} z_{t}) \quad (\psi(a_{1}) \geq 0 \text{ and definition of } \psi)
$$

\n
$$
= \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \sum_{t=1}^{T} (a_{t}^{\top} - a_{t+1}^{\top}) z_{t}
$$
 (Distributivity)
\n
$$
= \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}.
$$
 (Reminder (2))

 \Box

Interpretation of the terms in the proposition, i.e., of

$$
R_{T}^{FTHL}(\widetilde{a}) \leq \frac{1}{2\eta} ||\widetilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}:
$$

X $\times\overline{\times}$

 \bullet Interpretation of the terms in the proposition, i.e., of

$$
R_{T}^{FTHL}(\widetilde{a}) \leq \frac{1}{2\eta} ||\widetilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}:
$$

|| $|\tilde{a}|\rangle^2$ represents a *bias term:* The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .

 \times \times

 \bullet Interpretation of the terms in the proposition, i.e., of

$$
R_{\mathcal{T}}^{F\mathcal{F}\mathcal{H}}(\tilde{\mathbf{a}}) \leq \frac{1}{2\eta} ||\tilde{\mathbf{a}}||_2^2 + \eta \sum_{t=1}^{\mathcal{T}} ||z_t||_2^2 :
$$

- || $|\tilde{a}|\rangle^2$ represents a *bias term:* The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{i=1}^{T} ||z_i||_2^2$ represents a *"variance" term*: The more the environment data *z*_t *t*=1 varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .

 $\overline{\mathbf{x}\ \mathbf{x}}$

 \bullet Interpretation of the terms in the proposition, i.e., of

$$
R_{\mathcal{T}}^{F\mathcal{F}\mathcal{H}}(\tilde{\mathbf{a}}) \leq \frac{1}{2\eta} ||\tilde{\mathbf{a}}||_2^2 + \eta \sum_{t=1}^{\mathcal{T}} ||z_t||_2^2 :
$$

- || $|\tilde{a}|\rangle^2$ represents a *bias term:* The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{i=1}^{T} ||z_i||_2^2$ represents a *"variance" term*: The more the environment data *z*_t *t*=1 varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .
- **Thus, we have a trade-off for the optimal choice of** η : Making η large, leads to a smaller bias but at the expense of a higher variance and making η small leads to a smaller variance at the expense of a higher bias.

 $\overline{\mathbf{x}\ \mathbf{x}}$

Interpretation of the terms in the proposition, i.e., of

$$
R_{\mathcal{T}}^{F\mathcal{F}\mathcal{H}}(\tilde{\mathbf{a}}) \leq \frac{1}{2\eta} ||\tilde{\mathbf{a}}||_2^2 + \eta \sum_{t=1}^{\mathcal{T}} ||z_t||_2^2 :
$$

- || $|\tilde{a}|\rangle^2$ represents a *bias term:* The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{i=1}^{T} ||z_i||_2^2$ represents a *"variance" term*: The more the environment data *z*_t *t*=1 varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .
- **Thus, we have a trade-off for the optimal choice of** η : Making η large, leads to a smaller bias but at the expense of a higher variance and making η small leads to a smaller variance at the expense of a higher bias.
- With the right choice of η , we can prevent the instability of FTRL for an online linear optimization (OLO) problem.

 \overline{x}

Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

 $\mathbf{\times}$

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
	- sup $_{\tilde{a} \in \mathcal{A}} ||\tilde{a}||_2$ ≤ *B* for some finite constant *B* > 0,
	- $\sup_{z \in \mathcal{Z}} ||z||_2 \leq V$ for some finite constant $V > 0$.

Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

 $\mathbf{\times}$

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
	- sup_{$\hat{a} \in A$} $||\hat{a}||_2$ ≤ *B* for some finite constant *B* > 0,
	- sup*z*∈Z ||*z*||² ≤ *V* for some finite constant *V* > 0.

Then, by choosing the step size η for FTRL as $\eta = \frac{B}{\mu}$ $\frac{B}{V\sqrt{2.7}}$ it holds that

$$
R_T^{FTRL} \leq BV\sqrt{2\ T}.
$$

Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

 $\overline{}$

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
	- sup_{$\hat{a} \in A$} $||\hat{a}||_2$ ≤ *B* for some finite constant *B* > 0,
	- sup*z*∈Z ||*z*||² ≤ *V* for some finite constant *V* > 0.

Then, by choosing the step size η for FTRL as $\eta = \frac{B}{\mu}$ $\frac{B}{V\sqrt{2.7}}$ it holds that

$$
R_T^{FTRL} \leq BV\sqrt{2\,T}.
$$

 \bullet Note that the (optimal) parameter η depends on the time horizon τ , which is oftentimes not known in advance. However, there are some tricks (i.e., the *doubling trick*), which can help in such cases.

Proof:

• By the latter proposition and the assumptions

$$
R_T^{FTHL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2
$$

$$
\leq \frac{B^2}{2\eta} + \eta T V^2.
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

Proof:

• By the latter proposition and the assumptions

$$
R_{T}^{FTHL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}
$$

$$
\leq \frac{B^{2}}{2\eta} + \eta T V^{2}.
$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$
R_T^{FTRL} \leq \frac{B^2}{2\eta} + \eta \; T \; V^2.
$$

Proof:

• By the latter proposition and the assumptions

$$
R_{T}^{FTHL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}
$$

$$
\leq \frac{B^{2}}{2\eta} + \eta T V^{2}.
$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$
R_T^{FTRL} \leq \frac{B^2}{2\eta} + \eta \; T \; V^2.
$$

Now, the right-hand side of the latter display is a function of the form $f(\eta) = a/\eta + b\eta$ for some suitable $a, b > 0$.

Proof:

• By the latter proposition and the assumptions

$$
R_{T}^{FTHL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}
$$

$$
\leq \frac{B^{2}}{2\eta} + \eta T V^{2}.
$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$
R_T^{FTRL} \leq \frac{B^2}{2\eta} + \eta \; T \; V^2.
$$

- Now, the right-hand side of the latter display is a function of the form $f(\eta) = a/\eta + b\eta$ for some suitable $a, b > 0$.
- Minimizing *f* with respect to η results in the minimizer $\eta^* = \frac{B}{\sqrt{B}}$ $rac{B}{V\sqrt{2T}}$.

Proof:

• By the latter proposition and the assumptions

$$
R_T^{FTRL}(\tilde{a}) \leq \frac{1}{2\eta} ||\tilde{a}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2
$$

$$
\leq \frac{B^2}{2\eta} + \eta T V^2.
$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$
R_T^{FTRL} \leq \frac{B^2}{2\eta} + \eta \; T \; V^2.
$$

- Now, the right-hand side of the latter display is a function of the form $f(\eta) = a/\eta + b\eta$ for some suitable $a, b > 0$.
- Minimizing *f* with respect to η results in the minimizer $\eta^* = \frac{B}{\sqrt{B}}$ $rac{B}{V\sqrt{2T}}$.
- Plugging this minimizer into the latter display leads to the asserted inequality. П

DESIRED RESULTS

- With the FTRL algorithm we can cope with
	- online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for $a^{\tt FTRL}_{t+1}$ (It is just the empirical average over all data points seen till *t*),

 \times \times

DESIRED RESULTS

- With the FTRL algorithm we can cope with
	- online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for $a^{\tt FTRL}_{t+1}$ (It is just the empirical average over all data points seen till *t*),
	- online linear optimization (OLO) problems by using a suitable regularization function. In this case, we have quick update formulas and satisfactory regret guarantees as well.

 $\overline{\mathbf{X}}$

DESIRED RESULTS

- With the FTRL algorithm we can cope with
	- online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for $a^{\tt FTRL}_{t+1}$ (It is just the empirical average over all data points seen till *t*),
	- online linear optimization (OLO) problems by using a suitable regularization function. In this case, we have quick update formulas and satisfactory regret guarantees as well.
- \Rightarrow But what about other online learning problems or rather other loss functions?
- What we wish to have is an approach such that we can achieve for a large class of loss functions the advantages of FTRL for OLO and OCO problems:
	- **(a)** reasonable regret upper bounds;
	- **(b)** a quick update formula.

 $\times\overline{\times}$