
FOLLOW THE REGULARIZED LEADER

To overcome the shortcomings of the FTL algorithm, one can incorporate
a regularization function ψ : A → R+ into the action choice of FTL,
which leads to more stability.

To be more precise, let for t ≥ 1

aFTRL

t ∈ argmin
a∈A

(
ψ(a) +

∑t−1

s=1
(a, zs)

)
,

(Technical side note: if there are more than one minimum, then one of them is chosen.)

then the algorithm choosing aFTRLt in time step t is called the Follow the
regularized leader (FTRL) algorithm.

Interpretation: The algorithm predicts at as the element in A, which
minimizes the regularization function plus the cumulative loss so far over
the previous t − 1 time periods.

Obviously, the behavior of the FTRL algorithm is depending heavily on
the choice of the regularization function ψ. If ψ ≡ 0, then FTRL equals
FTL.
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REGULARIZATION IN ONLINE LEARNING VS.
BATCH LEARNING

Note that in the batch learning scenario, the learner seeks to optimize an
objective function which is the sum of the training loss and a
regularization function:

min
θ∈Rp

n∑
i=1

L(y (i),θ) + λψ(θ),

where λ ≥ 0 is some regularization parameter.

Here, the regularization function is part of the whole objective function,
which the learner seeks to minimize.

However, in the online learning scenario the regularization function does
(usually) not appear in the regret the learner seeks to minimize, but the
regularization function is only part of the action/decision rule at each time
step.
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REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

Lemma: Let aFTRL1 , aFTRL2 , . . . be the sequence of actions coming used by
the FTRL algorithm for the environmental data sequence z1, z2, . . . .
Then, for all ã ∈ A we have

RFTRL

T (ã) =
T∑

t=1

(
(aFTRLt , zt)− (ã, zt)

)
≤ ψ(ã)− ψ(aFTRL1 ) +

T∑
t=1

(
(aFTRLt , zt)− (aFTRLt+1 , zt)

)
.

Interpretation: the regret of the FTRL algorithm is bounded by the
difference of cumulated losses of itself compared to its one-step
lookahead cheater version and an additional regularization difference
term.

⇒ We have seen an analogous result for FTL!

(The proof is similar.)
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FTRL FOR ONLINE LINEAR OPTIMIZATION

In the following, we analyze the FTRL algorithm for the linear loss
(a, z) = a⊤z for online linear optimization (OLO) problems.

For this purpose, the squared L2-norm regularization will be used:

ψ(a) =
1

2η
||a||22 =

a⊤a
2η

,

where η is some positive scalar, the regularization magnitude.

It is straightforward to compute that if A = Rd , then

aFTRLt = −η
∑t−1

s=1
zs.

Hence, in this case we have for the FTRL algorithm the following update
rule

aFTRLt+1 = aFTRLt − η zt , t = 1, . . . ,T − 1.

Interpretation: −zt is the direction in which the update of aFTRLt to aFTRLt+1 is
conducted with step size η in order to reduce the loss.
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FTRL FOR OLO: THEORETICAL GUARANTEES

Proposition: Using the FTRL algorithm with the squared L2-norm
regularization on any online linear optimization (OLO) problem with
A ⊂ Rd leads to a regret of FTRL with respect to any action ã ∈ A of

RFTRL
T (ã) ≤ 1

2η
||ã||22 + η

T∑
t=1

||zt ||22 .

We will show the result only for the case A = Rd .

For the more general case, where A is a strict subset of Rd , we need a
slight modification of the update formula above:

aFTRLt = ΠA
(
− η

∑t−1

i=1
zi
)
= argmin

a∈A

∣∣∣∣∣∣∣∣a − η
∑t−1

i=1
zi

∣∣∣∣∣∣∣∣2
2

.

In words, the action of the FTRL algorithm has to be projected onto the
set A. Here, ΠA : Rd → A is the projection onto A.
(The proof is essentially the same, except that the Cauchy-Schwarz inequality is used in between.)
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FTRL FOR OLO: THEORETICAL GUARANTEES

Proof:

Reminder (1): RFTRL

T (ã) ≤ ψ(ã)− ψ(aFTRL

1 ) +
T∑

t=1

(
(aFTRL

t , zt)− (aFTRL

t+1 , zt)
)
.

Reminder (2): aFTRL

t+1 = aFTRL

t − η zt , t = 1, . . . , T − 1.

For sake of brevity, we write a1, a2, . . . for aFTRL

1 , aFTRL

2 , . . .

With this,

RFTRL
T (ã) ≤ ψ(ã)− ψ(a1) +

∑T

t=1
((at , zt)− (at+1, zt)) (Reminder (1))

≤ 1
2η

||ã||22 +
∑T

t=1
(a⊤

t zt − a⊤
t+1zt) (ψ(a1) ≥ 0 and definition of ψ)

=
1

2η
||ã||22 +

∑T

t=1
(a⊤

t − a⊤
t+1)zt (Distributivity)

=
1

2η
||ã||22 + η

∑T

t=1
||zt ||22 . (Reminder (2))
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T (ã) ≤ ψ(ã)− ψ(a1) +

∑T

t=1
((at , zt)− (at+1, zt)) (Reminder (1))

≤ 1
2η
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FTRL FOR OLO: THEORETICAL GUARANTEES

Interpretation of the terms in the proposition, i.e., of

RFTRL
T (ã) ≤ 1

2η
||ã||22 + η

T∑
t=1

||zt ||22 :

||ã||22 represents a bias term: The regret upper bound of FTRL is always
biased by the term ||ã||22 . The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of η.
T∑

t=1
||zt ||22 represents a ”variance” term: The more the environment data zt

varies, the larger this term. Hence, for a high variance a smaller
regularization magnitude is needed, i.e., a smaller choice of η.

Thus, we have a trade-off for the optimal choice of η : Making η large, leads to a
smaller bias but at the expense of a higher variance and making η small leads to
a smaller variance at the expense of a higher bias.

⇒ With the right choice of η, we can prevent the instability of FTRL for an online
linear optimization (OLO) problem.
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biased by the term ||ã||22 . The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of η.

T∑
t=1

||zt ||22 represents a ”variance” term: The more the environment data zt

varies, the larger this term. Hence, for a high variance a smaller
regularization magnitude is needed, i.e., a smaller choice of η.

Thus, we have a trade-off for the optimal choice of η : Making η large, leads to a
smaller bias but at the expense of a higher variance and making η small leads to
a smaller variance at the expense of a higher bias.

⇒ With the right choice of η, we can prevent the instability of FTRL for an online
linear optimization (OLO) problem.

© Advanced Machine Learning – 7 / 10



FTRL FOR OLO: THEORETICAL GUARANTEES

Interpretation of the terms in the proposition, i.e., of

RFTRL
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FTRL FOR OLO: THEORETICAL GUARANTEES

Under certain assumptions we can bal-
ance the trade-off induced by the bias
and the variance by choosing η appro-
priately.

Corollary: Suppose we use the FTRL algorithm with the squared
L2-norm regularization on an online linear optimization problem with
A ⊂ Rd such that

supã∈A ||ã||2 ≤ B for some finite constant B > 0,
supz∈Z ||z||2 ≤ V for some finite constant V > 0.

Then, by choosing the step size η for FTRL as η = B
V
√

2 T
it holds that

RFTRL
T ≤ BV

√
2 T .

Note that the (optimal) parameter η depends on the time horizon T ,
which is oftentimes not known in advance. However, there are some
tricks (i.e., the doubling trick), which can help in such cases.
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supã∈A ||ã||2 ≤ B for some finite constant B > 0,
supz∈Z ||z||2 ≤ V for some finite constant V > 0.

Then, by choosing the step size η for FTRL as η = B
V
√

2 T
it holds that

RFTRL
T ≤ BV

√
2 T .

Note that the (optimal) parameter η depends on the time horizon T ,
which is oftentimes not known in advance. However, there are some
tricks (i.e., the doubling trick), which can help in such cases.

© Advanced Machine Learning – 8 / 10



FTRL FOR OLO: THEORETICAL GUARANTEES

Under certain assumptions we can bal-
ance the trade-off induced by the bias
and the variance by choosing η appro-
priately.

Corollary: Suppose we use the FTRL algorithm with the squared
L2-norm regularization on an online linear optimization problem with
A ⊂ Rd such that
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FTRL FOR OLO: THEORETICAL GUARANTEES

Proof:

By the latter proposition and the assumptions

RFTRL
T (ã) ≤ 1

2η
||ã||22 + η

T∑
t=1

||zt ||22

≤ B2

2η
+ η T V 2.

The right-hand side of the latter display is independent of ã, so that

RFTRL
T ≤ B2

2η
+ η T V 2.

Now, the right-hand side of the latter display is a function of the
form f (η) = a/η + bη for some suitable a, b > 0.
Minimizing f with respect to η results in the minimizer η∗ = B

V
√

2 T
.

Plugging this minimizer into the latter display leads to the asserted
inequality.
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||ã||22 + η

T∑
t=1

||zt ||22

≤ B2

2η
+ η T V 2.

The right-hand side of the latter display is independent of ã, so that
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RFTRL
T ≤ B2

2η
+ η T V 2.

Now, the right-hand side of the latter display is a function of the
form f (η) = a/η + bη for some suitable a, b > 0.
Minimizing f with respect to η results in the minimizer η∗ = B

V
√

2 T
.

Plugging this minimizer into the latter display leads to the asserted
inequality.

© Advanced Machine Learning – 9 / 10



FTRL FOR OLO: THEORETICAL GUARANTEES

Proof:

By the latter proposition and the assumptions

RFTRL
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DESIRED RESULTS

With the FTRL algorithm we can cope with

online quadratic optimization (OQO) problems by using no
regularity (ψ ≡ 0). In this case, we have satisfactory regret
guarantees and also a quick update rule for aFTRLt+1 (It is just the
empirical average over all data points seen till t),

online linear optimization (OLO) problems by using a suitable
regularization function. In this case, we have quick update formulas
and satisfactory regret guarantees as well.

⇒ But what about other online learning problems or rather other loss
functions?

What we wish to have is an approach such that we can achieve for a
large class of loss functions the advantages of FTRL for OLO and OCO
problems:

(a) reasonable regret upper bounds;
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