FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- To be more precise, let for $t \ge 1$

$$a_t^{\mathtt{FTRL}} \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \left(\psi(a) + \sum_{s=1}^{t-1} (a, z_s) \right),$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{TRL} in time step *t* is called the **Follow the regularized leader** (FTRL) algorithm.

× 0 0 × × ×

FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- To be more precise, let for $t \ge 1$

$$a_t^{ ext{FTRL}} \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \left(\psi(a) + \sum_{s=1}^{t-1} (a, z_s) \right),$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{TTRL} in time step *t* is called the **Follow the regularized leader** (FTRL) algorithm.

• Interpretation: The algorithm predicts a_t as the element in A, which minimizes the regularization function plus the cumulative loss so far over the previous t - 1 time periods.

× × ×

FOLLOW THE REGULARIZED LEADER

- To overcome the shortcomings of the FTL algorithm, one can incorporate a regularization function $\psi : \mathcal{A} \to \mathbb{R}_+$ into the action choice of FTL, which leads to more stability.
- To be more precise, let for $t \ge 1$

$$a_t^{ ext{FTRL}} \in \operatorname*{arg\,min}_{a \in \mathcal{A}} \left(\psi(a) + \sum_{s=1}^{t-1} (a, z_s) \right),$$

(Technical side note: if there are more than one minimum, then one of them is chosen.) then the algorithm choosing a_t^{FTRL} in time step *t* is called the **Follow the regularized leader** (FTRL) algorithm.

- Interpretation: The algorithm predicts a_t as the element in A, which minimizes the regularization function plus the cumulative loss so far over the previous t 1 time periods.
- Obviously, the behavior of the FTRL algorithm is depending heavily on the choice of the regularization function ψ . If $\psi \equiv 0$, then FTRL equals FTL.

× < 0 × × ×

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

• Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$\min_{\boldsymbol{\theta}\in\mathbb{R}^p}\,\sum_{i=1}^n L(\boldsymbol{y}^{(i)},\boldsymbol{\theta}) + \lambda\,\psi(\boldsymbol{\theta}),$$

where $\lambda \geq$ 0 is some regularization parameter.

× 0 0 × 0 × ×

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

• Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$\min_{\boldsymbol{\theta}\in\mathbb{R}^p}\sum_{i=1}^n L(\boldsymbol{y}^{(i)},\boldsymbol{\theta}) + \lambda\,\psi(\boldsymbol{\theta}),$$

where $\lambda \geq$ 0 is some regularization parameter.

• Here, the regularization function is part of the whole objective function, which the learner seeks to minimize.

REGULARIZATION IN ONLINE LEARNING VS. BATCH LEARNING

• Note that in the batch learning scenario, the learner seeks to optimize an objective function which is the sum of the training loss and a regularization function:

$$\min_{\boldsymbol{\theta}\in\mathbb{R}^p}\sum_{i=1}^n L(\boldsymbol{y}^{(i)},\boldsymbol{\theta}) + \lambda\,\psi(\boldsymbol{\theta}),$$

where $\lambda \geq$ 0 is some regularization parameter.

- Here, the regularization function is part of the whole objective function, which the learner seeks to minimize.
- However, in the online learning scenario the regularization function does (usually) not appear in the regret the learner seeks to minimize, but the regularization function is only part of the action/decision rule at each time step.

× × ×

REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

 Lemma: Let a₁^{FTRL}, a₂^{FTRL}, ... be the sequence of actions coming used by the FTRL algorithm for the environmental data sequence z₁, z₂, Then, for all ã ∈ A we have

$$\begin{split} R_T^{\text{FTRL}}(\tilde{a}) &= \sum_{t=1}^T \left((a_t^{\text{FTRL}}, z_t) - (\tilde{a}, z_t) \right) \\ &\leq \psi(\tilde{a}) - \psi(a_1^{\text{FTRL}}) + \sum_{t=1}^T \left((a_t^{\text{FTRL}}, z_t) - (a_{t+1}^{\text{FTRL}}, z_t) \right) \end{split}$$

× × ×

REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

 Lemma: Let a₁^{FTRL}, a₂^{FTRL}, ... be the sequence of actions coming used by the FTRL algorithm for the environmental data sequence z₁, z₂, Then, for all ã ∈ A we have

$$egin{aligned} & \mathcal{R}_T^{ extsf{FTRL}}(ilde{a}) = \sum_{t=1}^T ig((a_t^{ extsf{FTRL}}, z_t) - (ilde{a}, z_t)ig) \ & \leq \psi(ilde{a}) - \psi(a_1^{ extsf{FTRL}}) + \sum_{t=1}^T ig((a_t^{ extsf{FTRL}}, z_t) - (a_{t+1}^{ extsf{FTRL}}, z_t)ig) \,. \end{aligned}$$

× × ×

- Interpretation: the regret of the FTRL algorithm is bounded by the difference of cumulated losses of itself compared to its one-step lookahead cheater version and an additional regularization difference term.
- $\Rightarrow~$ We have seen an analogous result for FTL!

(The proof is similar.)

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^{\top} z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$\psi(\boldsymbol{a}) = rac{1}{2\eta} ||\boldsymbol{a}||_2^2 = rac{\boldsymbol{a}^{ op} \boldsymbol{a}}{2\eta},$$

where η is some positive scalar, the *regularization magnitude.*

× 0 0 × 0 × ×

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^{\top} z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$\psi(\boldsymbol{a}) = rac{1}{2\eta} \left| \left| \boldsymbol{a} \right| \right|_2^2 = rac{\boldsymbol{a}^{ op} \boldsymbol{a}}{2\eta},$$

where η is some positive scalar, the *regularization magnitude.*

• It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$a_t^{\text{FTRL}} = -\eta \sum_{s=1}^{t-1} z_s.$$

× 0 0 × × ×

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^{\top} z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$\psi(\mathbf{a}) = rac{1}{2\eta} \left|\left|\mathbf{a}\right|\right|_2^2 = rac{\mathbf{a}^{\top}\mathbf{a}}{2\eta},$$

where η is some positive scalar, the *regularization magnitude.*

• It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$a_t^{\text{FTRL}} = -\eta \sum_{s=1}^{t-1} z_s.$$

• Hence, in this case we have for the FTRL algorithm the following update rule

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t, \qquad t = 1, \dots, T-1.$$

- In the following, we analyze the FTRL algorithm for the linear loss $(a, z) = a^{\top} z$ for online linear optimization (OLO) problems.
- For this purpose, the squared L2-norm regularization will be used:

$$\psi(\mathbf{a}) = rac{1}{2\eta} ||\mathbf{a}||_2^2 = rac{\mathbf{a}^{ op} \mathbf{a}}{2\eta},$$

where η is some positive scalar, the *regularization magnitude.*

• It is straightforward to compute that if $\mathcal{A} = \mathbb{R}^d$, then

$$a_t^{\text{FTRL}} = -\eta \sum_{s=1}^{t-1} z_s.$$

• Hence, in this case we have for the FTRL algorithm the following update rule

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t, \qquad t = 1, \dots, T-1.$$

Interpretation: $-z_t$ is the direction in which the update of a_t^{FTRL} to a_{t+1}^{FTRL} is conducted with step size η in order to reduce the loss.

× ° × ×

• **Proposition:** Using the FTRL algorithm with the squared L2-norm regularization on any online linear optimization (OLO) problem with $\mathcal{A} \subset \mathbb{R}^d$ leads to a regret of FTRL with respect to any action $\tilde{a} \in \mathcal{A}$ of

$$egin{aligned} & \mathcal{R}_{\mathcal{T}}^{\textit{FTRL}}(ilde{m{a}}) \leq rac{1}{2\eta} \left| \left| ilde{m{a}}
ight|
ight|_2^2 + \eta \sum_{t=1}^{\mathcal{T}} \left| \left| z_t
ight|
ight|_2^2. \end{aligned}$$

× × ×

• **Proposition:** Using the FTRL algorithm with the squared L2-norm regularization on any online linear optimization (OLO) problem with $\mathcal{A} \subset \mathbb{R}^d$ leads to a regret of FTRL with respect to any action $\tilde{a} \in \mathcal{A}$ of

$$R_{T}^{ extsf{FTRL}}(ilde{a}) \leq rac{1}{2\eta} \, || ilde{a}||_{2}^{2} + \eta \sum_{t=1}^{ au} ||z_{t}||_{2}^{2} \, .$$

× × 0 × × ×

- We will show the result only for the case $\mathcal{A} = \mathbb{R}^d$.
- For the more general case, where \mathcal{A} is a strict subset of \mathbb{R}^d , we need a slight modification of the update formula above:

$$\boldsymbol{a}_{t}^{\text{FTRL}} = \Pi_{\mathcal{A}} \big(-\eta \sum_{i=1}^{t-1} z_{i} \big) = \arg\min_{\boldsymbol{a} \in \mathcal{A}} \left| \left| \boldsymbol{a} - \eta \sum_{i=1}^{t-1} z_{i} \right| \right|_{2}^{2}.$$

In words, the action of the FTRL algorithm has to be projected onto the set \mathcal{A} . Here, $\Pi_{\mathcal{A}} : \mathbb{R}^d \to \mathcal{A}$ is the projection onto \mathcal{A} .

(The proof is essentially the same, except that the Cauchy-Schwarz inequality is used in between.)

• Proof:

$$\begin{array}{ll} \text{Reminder (1):} & R_T^{\text{FTRL}}(\tilde{a}) \leq \psi(\tilde{a}) - \psi(a_1^{\text{FTRL}}) + \sum_{t=1}^T \left((a_t^{\text{FTRL}}, z_t) - (a_{t+1}^{\text{FTRL}}, z_t) \right). \\ \text{Reminder (2):} & a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t, \qquad t = 1, \dots, T-1. \end{array}$$

• For sake of brevity, we write a_1, a_2, \ldots for $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$

• Proof:

$$\begin{array}{ll} \text{Reminder (1):} & R_T^{\text{FTRL}}(\tilde{a}) \leq \psi(\tilde{a}) - \psi(a_1^{\text{FTRL}}) + \sum_{t=1}^T \left((a_t^{\text{FTRL}}, z_t) - (a_{t+1}^{\text{FTRL}}, z_t) \right). \\ \text{Reminder (2):} & a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t, \qquad t = 1, \dots, T-1. \end{array}$$

- For sake of brevity, we write a_1, a_2, \ldots for $a_1^{\text{FTRL}}, a_2^{\text{FTRL}}, \ldots$
- With this,

$$\begin{aligned} \mathcal{R}_{T}^{FTRL}(\tilde{a}) &\leq \psi(\tilde{a}) - \psi(a_{1}) + \sum_{l=1}^{T} ((a_{l}, z_{l}) - (a_{l+1}, z_{l})) & (\text{Reminder (1)}) \\ &\leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \sum_{t=1}^{T} (a_{t}^{\top} z_{l} - a_{t+1}^{\top} z_{l}) & (\psi(a_{1}) \geq 0 \text{ and definition of } \psi) \\ &= \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \sum_{t=1}^{T} (a_{t}^{\top} - a_{t+1}^{\top}) z_{l} & (\text{Distributivity}) \\ &= \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} + \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2}. & (\text{Reminder (2)}) \end{aligned}$$

• Interpretation of the terms in the proposition, i.e., of

$$R_T^{FTRL}(\tilde{\mathbf{a}}) \leq rac{1}{2\eta} ||\tilde{\mathbf{a}}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2$$
 :

× 0 0 × 0 × ×

• Interpretation of the terms in the proposition, i.e., of

$$R_T^{FTRL}(\tilde{a}) \leq rac{1}{2\eta} || ilde{a}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2$$
 :

• $||\tilde{a}||_2^2$ represents a *bias term*: The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .

× 0 0 × 0 × ×

• Interpretation of the terms in the proposition, i.e., of

$$R_T^{FTRL}(ilde{a}) \leq rac{1}{2\eta} || ilde{a}||_2^2 + \eta \sum_{t=1}^T ||z_t||_2^2$$
 :

- $||\tilde{a}||_2^2$ represents a *bias term*: The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{t=1}^{r} ||z_t||_2^2$ represents a *"variance" term*: The more the environment data z_t varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .

× <

<b

• Interpretation of the terms in the proposition, i.e., of

$$R_T^{FTRL}(\tilde{a}) \leq rac{1}{2\eta} || \tilde{a} ||_2^2 + \eta \sum_{t=1}^T || z_t ||_2^2$$
 :

- $||\tilde{a}||_2^2$ represents a *bias term*: The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{t=1}^{2} ||z_t||_2^2$ represents a *"variance" term*: The more the environment data z_t varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .
- Thus, we have a trade-off for the optimal choice of η : Making η large, leads to a smaller bias but at the expense of a higher variance and making η small leads to a smaller variance at the expense of a higher bias.

× 0 0 × × ×

• Interpretation of the terms in the proposition, i.e., of

$$R_T^{FTRL}(\tilde{a}) \leq rac{1}{2\eta} || \tilde{a} ||_2^2 + \eta \sum_{t=1}^T || z_t ||_2^2$$
 :

- $||\tilde{a}||_2^2$ represents a *bias term*: The regret upper bound of FTRL is always biased by the term $||\tilde{a}||_2^2$. The impact of the bias term can be reduced by a higher regularization magnitude, i.e., a higher choice of η .
- $\sum_{t=1}^{2} ||z_t||_2^2$ represents a *"variance" term*: The more the environment data z_t varies, the larger this term. Hence, for a high variance a smaller regularization magnitude is needed, i.e., a smaller choice of η .
- Thus, we have a trade-off for the optimal choice of η : Making η large, leads to a smaller bias but at the expense of a higher variance and making η small leads to a smaller variance at the expense of a higher bias.
- \Rightarrow With the right choice of η , we can prevent the instability of FTRL for an online linear optimization (OLO) problem.

× < 0 × × ×

 Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

• Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

× 0 0 × 0 × ×

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
 - $\sup_{\tilde{a}\in\mathcal{A}}||\tilde{a}||_{2}\leq B$ for some finite constant B>0,
 - $\sup_{z \in \mathbb{Z}} ||z||_2 \leq V$ for some finite constant V > 0.

• Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

× 0 0 × 0 × ×

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
 - $\sup_{\tilde{a}\in\mathcal{A}} ||\tilde{a}||_2 \leq B$ for some finite constant B > 0,
 - $\sup_{z \in \mathcal{Z}} ||z||_2 \le V$ for some finite constant V > 0.

Then, by choosing the step size η for FTRL as $\eta = \frac{B}{V\sqrt{2T}}$ it holds that

$$R_T^{FTRL} \leq BV\sqrt{2T}.$$

• Under certain assumptions we can balance the trade-off induced by the bias and the variance by choosing η appropriately.

× 0 0 × 0 × ×

- **Corollary:** Suppose we use the FTRL algorithm with the squared L2-norm regularization on an online linear optimization problem with $\mathcal{A} \subset \mathbb{R}^d$ such that
 - $\sup_{\tilde{a}\in\mathcal{A}} ||\tilde{a}||_2 \leq B$ for some finite constant B > 0,
 - $\sup_{z \in \mathbb{Z}} ||z||_2 \leq V$ for some finite constant V > 0.

Then, by choosing the step size η for FTRL as $\eta = \frac{B}{V\sqrt{2T}}$ it holds that

$$R_T^{FTRL} \leq BV\sqrt{2T}.$$

 Note that the (optimal) parameter η depends on the time horizon T, which is oftentimes not known in advance. However, there are some tricks (i.e., the *doubling trick*), which can help in such cases.

• Proof:

• By the latter proposition and the assumptions

$$\begin{aligned} \mathcal{R}_{T}^{\text{FTRL}}(\tilde{\mathbf{a}}) &\leq \frac{1}{2\eta} ||\tilde{\mathbf{a}}||_{2}^{2} &+ \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2} \\ &\leq \frac{B^{2}}{2\eta} &+ \eta T V^{2}. \end{aligned}$$

X

XX

• Proof:

• By the latter proposition and the assumptions

$$\begin{aligned} R_T^{\text{FTRL}}(\tilde{a}) &\leq \frac{1}{2\eta} ||\tilde{a}||_2^2 &+ \eta \sum_{t=1}^T ||z_t||_2^2 \\ &\leq \frac{B^2}{2\eta} &+ \eta T V^2. \end{aligned}$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$extsf{R}_{ extsf{T}}^{ extsf{FTRL}} \leq rac{ extsf{B}^2}{2\eta} + \eta \; extsf{T} \; extsf{V}^2$$

• Proof:

• By the latter proposition and the assumptions

$$\begin{aligned} R_T^{\text{FTRL}}(\tilde{a}) &\leq \frac{1}{2\eta} ||\tilde{a}||_2^2 &+ \eta \sum_{t=1}^T ||z_t||_2^2 \\ &\leq \frac{B^2}{2\eta} &+ \eta T V^2. \end{aligned}$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$\textit{R}_{\textit{T}}^{\textit{FTRL}} \leq rac{\textit{B}^2}{2\eta} + \eta \; \textit{T} \; \textit{V}^2$$

Now, the right-hand side of the latter display is a function of the form f(η) = a/η + bη for some suitable a, b > 0.

• Proof:

• By the latter proposition and the assumptions

$$\begin{aligned} R_T^{\text{FTRL}}(\tilde{a}) &\leq \frac{1}{2\eta} ||\tilde{a}||_2^2 &+ \eta \sum_{t=1}^T ||z_t||_2^2 \\ &\leq \frac{B^2}{2\eta} &+ \eta T V^2. \end{aligned}$$

• The right-hand side of the latter display is independent of $\tilde{a},$ so that

$$R_{ au}^{ extsf{FTRL}} \leq rac{B^2}{2\eta} + \eta \; T \; V^2$$

- Now, the right-hand side of the latter display is a function of the form f(η) = a/η + bη for some suitable a, b > 0.
- Minimizing *f* with respect to η results in the minimizer $\eta^* = \frac{B}{V\sqrt{2T}}$.

• Proof:

• By the latter proposition and the assumptions

$$\begin{aligned} \mathcal{R}_{T}^{\textit{FTRL}}(\tilde{a}) &\leq \frac{1}{2\eta} ||\tilde{a}||_{2}^{2} &+ \eta \sum_{t=1}^{T} ||z_{t}||_{2}^{2} \\ &\leq \frac{B^{2}}{2\eta} &+ \eta T V^{2}. \end{aligned}$$

• The right-hand side of the latter display is independent of \tilde{a} , so that

$$\textit{R}_{\textit{T}}^{\textit{FTRL}} \leq rac{\textit{B}^2}{2\eta} + \eta \; \textit{T} \; \textit{V}^2$$

- Now, the right-hand side of the latter display is a function of the form f(η) = a/η + bη for some suitable a, b > 0.
- Minimizing f with respect to η results in the minimizer $\eta^* = \frac{B}{V_0/2T}$.
- Plugging this minimizer into the latter display leads to the asserted inequality.

DESIRED RESULTS

- With the FTRL algorithm we can cope with
 - online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for a_{t+1}^{FTRL} (It is just the empirical average over all data points seen till *t*),

× × 0 × × ×

DESIRED RESULTS

- With the FTRL algorithm we can cope with
 - online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for a_{t+1}^{FTRL} (It is just the empirical average over all data points seen till t),
 - online linear optimization (OLO) problems by using a suitable regularization function. In this case, we have quick update formulas and satisfactory regret guarantees as well.

DESIRED RESULTS

- With the FTRL algorithm we can cope with
 - online quadratic optimization (OQO) problems by using no regularity ($\psi \equiv 0$). In this case, we have satisfactory regret guarantees and also a quick update rule for a_{t+1}^{FTRL} (It is just the empirical average over all data points seen till t),
 - online linear optimization (OLO) problems by using a suitable regularization function. In this case, we have quick update formulas and satisfactory regret guarantees as well.
- $\Rightarrow\,$ But what about other online learning problems or rather other loss functions?
- What we wish to have is an approach such that we can achieve for a large class of loss functions the advantages of FTRL for OLO and OCO problems:
 - (a) reasonable regret upper bounds;
 - (b) a quick update formula.

× < 0 × × ×