
FTL FOR OQO PROBLEMS

One popular instantiation of the online learning problem is the problem of online
quadratic optimization (OQO).

In its most general form, the loss function is thereby defined as

(at , zt) =
1
2
||at − zt ||22 ,

where A,Z ⊂ Rd .

Proposition: Using FTL on any online quadratic optimization problem with
A = Rd and V = sup

z∈Z
||z||2, leads to a regret of

RFTL

T ≤ 4V 2 (log(T ) + 1).
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FTL FOR OQO PROBLEMS: ANALYSIS

Proof:

In the following, we denote aFTL1 , aFTL2 , . . . simply by a1, a2, . . .

Reminder (Useful Lemma):

RFTL

T ≤
∑T

t=1
(aFTLt , zt)−

∑T

t=1
(aFTLt+1, zt)

Using this lemma, we just have to show that

T∑
t=1

((at , zt)− (at+1, zt)) ≤ 4L2 · (log(T ) + 1) . (1)

So, we will prove (1). For this purpose, we compute the
explicit form of the actions of FTL for this type of online
learning problem.
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FTL FOR OQO PROBLEMS: ANALYSIS

Claim: It holds that at =
1

t−1 ·
∑t−1

s=1 zs, if (a, z) = 1
2 ||a − z||22 .

Recall that

aFTLt = argmin
a∈A

t−1∑
s=1

(a, zs) = argmin
a∈A

t−1∑
s=1

1
2
||a − zs||22 .

So, we have to find the minimizer of the function

f (a) :=
t−1∑
s=1

1
2
||a − zs||22 =

t−1∑
s=1

1
2
(a − zs)

⊤(a − zs).

Compute ∇f (a) =
∑t−1

s=1 a − zs = (t − 1)a −
∑t−1

s=1 zs, which
we set to zero and solve with respect to a to obtain the claim.
(f is convex, so that this leads indeed to a minimizer.)
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FTL FOR OQO PROBLEMS: ANALYSIS

Hence, at is the empirical average of z1, . . . , zt−1 and we can
provide the following incremental update formula for its
computation

at+1 = 1
t ·

t∑
s=1

zs = 1
t

(
zt +

t−1∑
s=1

zs

)
= 1

t (zt + (t − 1)at) =
1
t zt +

(
1 − 1

t

)
at .

From the last display we derive that

at+1 − zt =
(
1 − 1

t

)
· at +

1
t zt − zt =

(
1 − 1

t

)
· (at − zt).

Claim:

(at , zt)− (at+1, zt) ≤ 1
t · ||at − zt ||22 . (2)
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FTL FOR OQO PROBLEMS: ANALYSIS

Reminder: at+1 − zt =
(
1 − 1

t

)
· (at − zt).

Indeed, this can be seen as follows

(at , zt)− (at+1, zt) =
1
2 ||at − zt ||22 −

1
2
||at+1 − zt ||22

= 1
2

(
||at − zt ||22 − ||at+1 − zt ||22

)
= 1

2

(
||at − zt ||22 −

∣∣∣∣(1 − 1
t

)
· (at − zt)

∣∣∣∣2

2

)
.

And from this,

(at , zt)− (at+1, zt) =
1
2

(
||at − zt ||22 −

(
1 − 1

t

)2 · ||at − zt ||22
)

= 1
2

(
1 −

(
1 − 1

t

)2
)
· ||at − zt ||22

=
(

1
t −

1
2t2

)
· ||at − zt ||22

≤ 1
t · ||at − zt ||22 .
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Reminder: (at , zt)− (at+1, zt) ≤ 1
t · ||at − zt ||22 . (2)

Since by assumption L = sup
z∈Z

||z||2 and at is the empirical average of

z1, . . . , zt−1, we have that ||at ||2 ≤ L.
Now the triangle inequality states that for any two vectors x , y ∈ Rd it holds
that

||x + y ||2 ≤ ||x ||2 + ||y ||2 ,
so that

||at − zt ||2 ≤ ||at ||2 + ||zt ||2 ≤ 2L. (3)

Summing over all t in (2) and using (3) we arrive at

T∑
t=1

((at , zt)− (at+1, zt)) ≤
T∑

t=1

(
1
t · ||at − zt ||22

)
≤

T∑
t=1

1
t · (2L)2

= 4L2 ·
T∑

t=1

1
t .
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Reminder:
T∑

t=1

((at , zt)− (at+1, zt)) ≤ 4L2 ·
T∑

t=1

1
t

Now, it holds that
T∑

t=1

1
t ≤ log(T ) + 1, so that we obtain

T∑
t=1

((at , zt)− (at+1, zt)) ≤ 4L2 ·
T∑

t=1

1
t ≤ 4L2 · (log(T ) + 1) ,

which is what we wanted to prove.
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