
ONLINE CONVEX OPTIMIZATION

One of the most relevant instantiations of the online learning problem is
the problem of online convex optimization (OCO), which is characterized
by a loss function : A×Z → R, which is convex w.r.t. the action, i.e.,
a 7→ (a, z) is convex for any z ∈ Z.

Note that both OLO and OQO belong to the class of online convex
optimization problems:

Online linear optimization (OLO) with convex action spaces:
(a, z) = a⊤z is a convex function in a ∈ A, provided A is convex.
Online quadratic optimization (OQO) with convex action spaces:
(a, z) = 1

2 ||a − z||22 is a convex function in a ∈ A, provided A is
convex.
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ONLINE GRADIENT DESCENT: MOTIVATION

We have seen that the FTRL algorithm with the 2 norm regularization
ψ(a) = 1

2η ||a||22 achieves satisfactory results for online linear
optimization (OLO) problems, that is, if (a, z) = Llin(a, z) := a⊤z, then
we have

Fast updates — If A = Rd , then

aFTRLt+1 = aFTRLt − η zt , t = 1, . . . ,T ;

Regret bounds — By an appropriate choice of η and some (mild)
assumptions on A and Z, we have

RFTRL

T = o(T ).
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ONLINE GRADIENT DESCENT: MOTIVATION
Apparently, the nice form of the loss function Llin is responsible for the
appealing properties of FTRL in this case. Indeed, since ∇aLlin(a, z) = z
note that the update rule can be written as

aFTRLt+1 = aFTRLt − η zt = aFTRLt − η∇aLlin(aFTRLt , zt).

Interpretation: In each time step t + 1, we
are following the direction with the steep-
est decrease of the loss (represented by
−∇Llin(aFTRLt , zt)) from the current ”position”
aFTRLt with the step size η

⇒ Gradient Descent.
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ONLINE GRADIENT DESCENT: MOTIVATION

Question: How to transfer this idea of the Gradient Descent for the
update formula to other loss functions, while still preserving the regret
bounds?

Solution (for convex losses): Recall the equivalent characterization of
convexity of differentiable convex functions:

f : S → R is convex ⇔ f (y) ≥ f (x) + (y − x)⊤∇f (x) for any x , y ∈ S

⇔ f (x)− f (y) ≤ (x − y)⊤∇f (x) for any x , y ∈ S.

This means if we are dealing with a loss function : A×Z → R, which is
convex and differentiable in its first argument (A has also to be convex),
then

(a, z)− (ã, z) ≤ (a − ã)⊤ ∇a(a, z), ∀a, ã ∈ A, z ∈ Z.
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ONLINE GRADIENT DESCENT: MOTIVATION

Reminder: (a, z)− (ã, z) ≤ (a − ã)⊤ ∇a(a, z), ∀a, ã ∈ A, z ∈ Z.

Let z1, . . . , zT arbitrary environmental data and a1, . . . , aT be some arbitrary
action sequence. Substitute z̃t := ∇a(at , zt) and note that

RT (ã) =
T∑

t=1

(at , zt)− (ã, zt) ≤
T∑

t=1

(at − ã)⊤ ∇a(at , zt)

=
T∑

t=1

(at − ã)⊤ z̃t =
T∑

t=1

a⊤
t z̃t − ã⊤ z̃t =

T∑
t=1

Llin(at , z̃t)− Llin(ã, z̃t).

Conclusion: The regret of a learner with respect to a differentiable and convex
loss function is bounded by the regret corresponding to an online linear
optimization problem with environmental data z̃t = ∇a(at , zt).

We know: Online linear optimization problems can be tackled by means of the
FTRL algorithm!

⇝ Incorporate the substitution z̃t = ∇a(at , zt) into the update formula of FTRL with
squared L2-norm regularization.
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

The corresponding algorithm which chooses its action according to these
considerations is called the Online Gradient Descent (OGD) algorithm
with step size η > 0. It holds in particular,

aOGDt+1 = aOGDt − η∇a(aOGDt , zt), t = 1, . . .T . (1)

(Technical side note: For this update formula we assume that A = Rd . Moreover, the first action aOGD1 is arbitrary. )

We have the following connection between FTRL and OGD:

Let z̃OGDt := ∇a(aOGDt , zt) for any t = 1, . . . ,T .
The update formula for FTRL with 2 norm regularization for the
linear loss Llin and the environmental data z̃OGDt is

aFTRL

t+1 = aFTRL

t − ηz̃OGD

t = aFTRL

t − η∇a(a
OGD

t , zt).

If we have that aFTRL1 = aOGD1 , then it iteratively follows that
aFTRLt+1 = aOGDt+1 for any t = 1, . . . ,T in this case.
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

With the deliberations above we can infer that

ROGD

T , (ã | (zt)t) =
∑T

t=1
(aOGDt , zt)− (ã, zt)

≤
∑T

t=1
Llin(aOGDt , z̃OGDt )− Llin(ã, z̃OGDt )

(if aOGD1 = aFTRL1 )
=

∑T

t=1
Llin(aFTRLt , z̃OGDt )− Llin(ã, z̃OGDt )

= RFTRL

T ,Llin(ã | (z̃OGDt )t),

where we write in the subscripts of the regret the corresponding loss
function and also include the corresponding environmental data as a
second argument in order to emphasize the connections.

Interpretation: The regret of the FTRL algorithm (with 2 norm
regularization) for the online linear optimization problem (characterized
by the linear loss Llin) with environmental data z̃OGDt is an upper bound
for the OGD algorithm for the online convex problem (characterized by a
differentiable convex loss ) with the original environmental data zt .
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ONLINE GRADIENT DESCENT: REGRET

Due to this connection we immediately obtain a similar decomposition of the
regret upper bound into a bias term and a variance term as for the FTRL
algorithm for OLO problems.

Corollary. Using the OGD algorithm on any online convex optimization problem
(with differentiable loss function ) leads to a regret of OGD with respect to any
action ã ∈ A of

ROGD

T (ã) ≤ 1
2η

||ã||22 + η
∑T

t=1

∣∣∣∣z̃OGD

t

∣∣∣∣2

2

=
1

2η
||ã||22 + η

∑T

t=1

∣∣∣∣∇a(a
OGD

t , zt)
∣∣∣∣2

2
.

Note that the step size η > 0 of OGD has the same role as the regularization
magnitude of FTRL: It should balance the trade-off between the bias- and the
variance-term.
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ONLINE GRADIENT DESCENT: REGRET

As a consequence, we can also derive a similar order of the regret for the
OGD algorithm on OCO problems as for the FTRL on OLO problems by
imposing a slightly different assumption on the (new) “variance” term∑T

t=1 ||∇a(aOGDt , zt)||
2
2 .

Corollary: Suppose we use the OGD algorithm on an online convex
optimization problem with a convex action space A ⊂ Rd such that

supã∈A ||ã||2 ≤ B for some finite constant B > 0
supa∈A,z∈Z ||∇a(a, z)||2 ≤ V for some finite constant V > 0.

Then, by choosing the step size η for OGD as η = B
V
√

2 T
we get

ROGD

T ≤ BV
√

2 T .
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REGRET LOWER BOUNDS FOR OCO

Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by a convex loss function , a
bounded (convex) action space A = [−B,B]d and bounded gradients
supa∈A,z∈Z ||∇a(a, z)||2 ≤ V for some finite constants B,V > 0, such
that the algorithm incurs a regret of Ω(

√
T ) in the worst case.

Recall that under (almost) the same assumptions as the theorem above,
we have ROGD

T ≤ BV
√

2 T .

⇝ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T .
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Outlook
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ONLINE MACHINE LEARNING: OUTLOOK

Online machine learning is a very large field of research.

Figure: Hoi et al. (2018), ”Online Learning: A Comprehensive Survey”.
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