
ONLINE GRADIENT DESCENT

The Online Gradient Descent (OGD) algorithm with step size η > 0
chooses its action by

aOGDt+1 = aOGDt − η∇a(aOGDt , zt), t = 1, . . .T . (1)

(Technical side note: For this update formula we assume that A = Rd . Moreover, the first action aOGD1 is arbitrary. )

We have the following connection between FTRL and OGD:

Let z̃OGDt := ∇a(aOGDt , zt) for any t = 1, . . . ,T .
The update formula for FTRL with 2 norm regularization for the
linear loss Llin and the environmental data z̃OGDt is

aFTRL

t+1 = aFTRL

t − ηz̃OGD

t = aFTRL

t − η∇a(a
OGD

t , zt).

If we have that aFTRL1 = aOGD1 , then it iteratively follows that
aFTRLt+1 = aOGDt+1 for any t = 1, . . . ,T in this case.
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

With the deliberations above we can infer that

ROGD

T , (ã | (zt)t) =
∑T

t=1
(aOGDt , zt)− (ã, zt)

≤
∑T

t=1
Llin(aOGDt , z̃OGDt )− Llin(ã, z̃OGDt )

(if aOGD1 = aFTRL1 )
=

∑T

t=1
Llin(aFTRLt , z̃OGDt )− Llin(ã, z̃OGDt )

= RFTRL

T ,Llin(ã | (z̃OGDt )t),

where we write in the subscripts of the regret the corresponding loss
function and also include the corresponding environmental data as a
second argument in order to emphasize the connections.

Interpretation: The regret of the FTRL algorithm (with 2 norm
regularization) for the online linear optimization problem (characterized
by the linear loss Llin) with environmental data z̃OGDt is an upper bound
for the OGD algorithm for the online convex problem (characterized by a
differentiable convex loss ) with the original environmental data zt .

© Advanced Machine Learning – 2 / 5



ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

With the deliberations above we can infer that

ROGD
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ONLINE GRADIENT DESCENT: REGRET

Due to this connection we immediately obtain a similar decomposition of
the regret upper bound into a bias term and a variance term as for the
FTRL algorithm for OLO problems.

Corollary. Using the OGD algorithm on any online convex optimization
problem (with differentiable loss function ) leads to a regret of OGD with
respect to any action ã ∈ A of

ROGD

T (ã) ≤ 1
2η

||ã||22 + η
∑T

t=1

∣∣∣∣z̃OGDt

∣∣∣∣2
2

=
1

2η
||ã||22 + η

∑T

t=1

∣∣∣∣∇a(aOGDt , zt)
∣∣∣∣2

2
.

Note that the step size η > 0 of OGD has the same role as the
regularization magnitude of FTRL: It should balance the trade-off
between the bias- and the variance-term.
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ONLINE GRADIENT DESCENT: REGRET

As a consequence, we can also derive a similar order of the regret for the
OGD algorithm on OCO problems as for the FTRL on OLO problems by
imposing a slightly different assumption on the (new) “variance” term∑T

t=1 ||∇a(aOGDt , zt)||
2
2 .

Corollary: Suppose we use the OGD algorithm on an online convex
optimization problem with a convex action space A ⊂ Rd such that

supã∈A ||ã||2 ≤ B for some finite constant B > 0
supa∈A,z∈Z ||∇a(a, z)||2 ≤ V for some finite constant V > 0.

Then, by choosing the step size η for OGD as η = B
V
√

2 T
we get

ROGD

T ≤ BV
√

2 T .
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supã∈A ||ã||2 ≤ B for some finite constant B > 0
supa∈A,z∈Z ||∇a(a, z)||2 ≤ V for some finite constant V > 0.

Then, by choosing the step size η for OGD as η = B
V
√

2 T
we get

ROGD

T ≤ BV
√

2 T .

© Advanced Machine Learning – 4 / 5



REGRET LOWER BOUNDS FOR OCO

Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

a convex loss function ,

a bounded (convex) action space A = [−B,B]d for some finite
constant B > 0,
and bounded gradients supa∈A,z∈Z ||∇a(a, z)||2 ≤ V for some
finite constant V > 0,

such that the algorithm incurs a regret of Ω(
√

T ) in the worst case.

Recall that under (almost) the same assumptions as the theorem above,
we have ROGD

T ≤ BV
√

2 T .

⇝ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T .
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