
BATCH LEARNING

The conventional machine learning is rooted in the statistical learning
theory and is sometimes referred to as the batch learning scenario:

A data set D =
{
(x(i), y (i))

}n

i=1
is given

beforehand in form of a random sample
(iid observations).

⇝ a batch of data

The goal is to learn a single predictor
(model), i.e., a mapping f : X → Y that
will have a good prediction accuracy (low
risk) on future, unseen data in X × Y .

The learning task on the available data beforehand is called the training
phase and the prediction on the unseen data is called the testing phase.
Both phases are separated.
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ONLINE LEARNING

However, many real-world problems are dynamic with the following
aspects:

Sequential order — data is generated
only bit by bit;

On-the-fly decisions — decisions or
predictions have to be made during the
data generating process;

Unforeseeable consequences —
decisions can have a drastic influence on
the data generating process;

Constraints — there is a specific time limit
or computational limit for the decision.

These dynamic aspects outline the framework where online learning is
settled.
Characteristically: In the online learning scenario the training phase and
the testing phase are interleaved.
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ONLINE LEARNING: EXAMPLES
There are many real-world applications which fit into the online learning
scenario:

Weather Forecasting — Observe meteorological data as data streams by
satellites for instance and keep the current weather prediction up to date.

Sequential Investment — A bank has to allocate its total capital on the
financial market, where asset prices are varying over time.

Navigation systems — Find the best path from A to B given the current
traffic situation.

Autonomous driving systems — Steer the automotive, while constantly
monitoring the environment and react appropriately to any changes.

. . .

© Advanced Machine Learning – 3 / 12



ONLINE LEARNING: EXAMPLES
There are many real-world applications which fit into the online learning
scenario:

Weather Forecasting — Observe meteorological data as data streams by
satellites for instance and keep the current weather prediction up to date.

Sequential Investment — A bank has to allocate its total capital on the
financial market, where asset prices are varying over time.

Navigation systems — Find the best path from A to B given the current
traffic situation.

Autonomous driving systems — Steer the automotive, while constantly
monitoring the environment and react appropriately to any changes.

. . .

© Advanced Machine Learning – 3 / 12



ONLINE LEARNING: EXAMPLES
There are many real-world applications which fit into the online learning
scenario:

Weather Forecasting — Observe meteorological data as data streams by
satellites for instance and keep the current weather prediction up to date.

Sequential Investment — A bank has to allocate its total capital on the
financial market, where asset prices are varying over time.

Navigation systems — Find the best path from A to B given the current
traffic situation.

Autonomous driving systems — Steer the automotive, while constantly
monitoring the environment and react appropriately to any changes.

. . .

© Advanced Machine Learning – 3 / 12



ONLINE LEARNING: EXAMPLES
There are many real-world applications which fit into the online learning
scenario:

Weather Forecasting — Observe meteorological data as data streams by
satellites for instance and keep the current weather prediction up to date.

Sequential Investment — A bank has to allocate its total capital on the
financial market, where asset prices are varying over time.

Navigation systems — Find the best path from A to B given the current
traffic situation.

Autonomous driving systems — Steer the automotive, while constantly
monitoring the environment and react appropriately to any changes.

. . .

© Advanced Machine Learning – 3 / 12



ONLINE LEARNING: ILLUSTRATION
The data is available only in a sequential order generated by the environment
and the learner’s actions/predictions have to be made on-the-fly.

⇒ Learning algorithms have to be dynamically adapted (Update of internal
model).
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and the learner’s actions/predictions have to be made on-the-fly.
⇒ Learning algorithms have to be dynamically adapted (Update of internal
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⇒ The learner and the environment are alternately performing their actions.
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THE BASIC ONLINE LEARNING PROTOCOL
Formally, an online learning problem consists of:

a learner (forecaster, agent resp. decision maker), an environment (user resp.
adversary, system resp. nature),

time steps 1, 2, . . . , T (may be infinite),

available actions A for the learner (may be infinite),

environmental data space Z,

a loss function L : A×Z → R.

Mechanism: In each time step t

learner chooses an action at ∈ A,

environment generates data zt ∈ Z,

learner observes the environmental data and suffers loss L(at , zt),

learner update its model/ knowledge basis.

Typically A = Z = Y , so that

the learner’s chosen action at = ŷt corresponds to a prediction,

the generated data point zt = yt is the revealed outcome.
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THE EXTENDED ONLINE LEARNING PROTOCOL

In some applications, the environmental data consists of two parts:
zt = (z(1)

t , z(2)
t ), where the first part of the data, z(1)

t , is revealed to the learner
before the action is made. After the learner carries out its action, the remaining
part of the environmental data is revealed, that is, z(2)

t .

The mechanism in such an online learning problem is then as follows: In each

time step t
the environment generates data zt = (z(1)

t , z(2)
t ) ∈ Z,

the learner observes the first part of the environmental data z(1)
t ,

the learner chooses an action at ∈ A,
the learner observes the remaining part of the environmental data z(2)

t and
suffers loss L(at , zt),
the learner updates its knowledge base.

Apparently, the learner can take the a priori information in form of z(1)
t at each

time step t into account when choosing its action.

We call this setting the extended online learning protocol.

Typically A = Y and Z = X × Y , so that
the first part z(1)

t = xt is some feature information,
the learner’s chosen action at = ŷt corresponds to a prediction (dep. on xt ),
the second part z(2)

t = yt is the corresponding outcome.
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DATA GENERATION IN ONLINE LEARNING

Typically for the online learning setting is that no statistical
assumptions is made on how the sequence of environmental data
is generated.

In particular, the environmental data are not necessarily generated
by a probability distribution!

This also covers the area of adversarial learning: the data can
even be generated by an adversary trying to fool the learner.

However, the online learning setting can of course also be
considered in a statistical setting.

© Advanced Machine Learning – 7 / 12



DATA GENERATION IN ONLINE LEARNING

Typically for the online learning setting is that no statistical
assumptions is made on how the sequence of environmental data
is generated.

In particular, the environmental data are not necessarily generated
by a probability distribution!

This also covers the area of adversarial learning: the data can
even be generated by an adversary trying to fool the learner.

However, the online learning setting can of course also be
considered in a statistical setting.

© Advanced Machine Learning – 7 / 12



ONLINE LEARNING: REQUIREMENTS

The dynamical aspects have to be incorporated for the design of efficient
learning algorithms.

The online learner has to cope with the sequential availability of the data
and to cope with time as well as computational constraints.

Roughly speaking, one seeks to construct an online learning algorithm
which is adaptive to the environment and allows incremental as well as
preferably cheap updates over time.

Although consideration of time and memory constraints is important for
practical purposes, we will only implicitly consider these constraints in
this lecture.

We will mainly focus our theoretical analysis on the performance of the
learner in terms of its (cumulative) loss, which, however, will usually
ignore computational aspects of the learner.
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MEASURE OF QUALITY IN ONLINE LEARNING

In order to measure the quality of an online learner one can compute the
difference between the cumulative loss of the learner and the cumulative
loss by taking some competing action a ∈ A :

RT (a) =
∑T

t=1
L(at , zt)−

∑T

t=1
L(a, zt).

This value is called the (cumulative) regret of a learner with respect to an
action a ∈ A.

Here,∑T
t=1 L(at , zt) is the cumulative loss of the learner,∑T
t=1 L(a, zt) is the cumulative loss of the competing action a.
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MEASURE OF QUALITY IN ONLINE LEARNING

It seems natural to compare the incurred cumulative loss of the learner
with the best action(s) in hindsight:

RT =
∑T

t=1
L(at , zt)− inf

a∈A

∑T

t=1
L(a, zt).

Here,∑T
t=1 L(at , zt) is the cumulative loss of the learner,

infa∈A
∑T

t=1 L(a, zt) is the cumulative loss of the best action(s) in
hindsight.

We refer to RT as the (cumulative) regret of the online learner. It is easy
to see that RT = supa∈A RT (a).
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MEASURE OF QUALITY IN ONLINE LEARNING

The objective of the online learner is to minimize the cumulative regret
RT .

Note that the cumulative regret can be in principle negative as the action
sequence could be such that L(as, zs) < L(a∗, zs) holds for specific time
steps s, where a∗ ∈ argmina∈A

∑T
s=1 L(a, zs) is one of the best actions

in hindsight (may be unique).

If the cumulative regret is always non-negative (which will be usually the
case), then the overall goal of an online learner is to have a regret which
is sublinear in the time horizon T .

Formally, the following should hold

RT = o(T ).

Interpretation: The average regret per time step (or per example) goes to
zero:

1
T

( T∑
t=1

L(at , zt)− inf
a∈A

T∑
t=1

L(a, zt)
)
=

RT

T
= o(1).
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DYNAMIC REGRET

One might ask why one compares only with a fixed best action in
hindsight, say a∗, instead of a sequence of actions a∗1, a

∗
2, . . . , a

∗
T?

The rationale behind this measure of quality is that the best fixed
action in hindsight is already reasonably good over all the time
steps: it performs almost as well as a batch learner that observes
the entire sequence and picks the best action in hindsight.

However, this is too optimistic and may not hold in changing
environments, where data are evolving and the optimal action is
drifting over the time.

To address this limitation, recent works have also considered the
dynamic regret:

RD
T (a

∗
1, a

∗
2, . . . , a

∗
T ) =

∑T

t=1
L(at , zt)−

∑T

t=1
L(a∗t , zt).

We will cover only the static regret in this lecture.
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© Advanced Machine Learning – 12 / 12



DYNAMIC REGRET
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