
KRONECKER KERNEL RIDGE REGRESSION

In MTP with target features, we often use kernel methods.
Consider the following pairwise model representation in the primal:

f (x, t) = ω⊤ (ϕ(x)⊗ ψ(t)) ,

where ϕ is feature mapping for features and ψ is feature mapping
for target (features) and ⊗ is Kronecker product.
This yields Kronecker product pairwise kernel in the dual:

f (x, t) =
∑

(x′,t′)∈D

α(x′,t′) · k(x, x′) · g(t, t′) =
∑

(x′,t′)∈D

α(x′,t′)Γ((x, t), (x
′, t′)),

where k is kernel for feature map ϕ, g kernel for feature map ψ
and α(x′,t′) are dual parameters determined by:

min
α

||Γα− z||22 + λα⊤Γα, where z = vec(Y )

Commonly used in zero-shot learning.
Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018.
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EXPLOITING RELATIONS IN REGULARIZATION

Graph-based regularization for graph-type relations in targets:

min
Θ

∥Y − ΦΘ∥2
F + λ

l∑
m=1

∑
m′∈N (m)

∥θm − θm′∥2,

where N (j) is the set of targets related to target j.

The graph or tree is given as prior information.

Can be extended to a weighted version aware of the similarities

Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013.

© Advanced Machine Learning – 2 / 7



HIERARCHICAL MULTI-LABEL CLASSIFICATION

Hierarchies can also be used to define specific loss functions,
such as the Hierarchy-loss:

LHier (y, f ) =
∑

m:ym ̸=ŷm

cm 1[anc(ym)=anc(ŷm)],

This is rather common in multi-label classification problems.

Bi and Kwok, Bayes-optimal hierarchical multi-label classification, IEEE Transactions on Knowledge and Data Engineering, 2014.
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PROBABILISTIC CLASSIFIER CHAINS

Estimate the joint conditional distribution P(y | x).

For optimizing the subset 0/1 loss:

L0/1(y, ŷ) = 1[y ̸=ŷ]

Repeatedly apply the product rule of probability:

P(y | x) =
l∏

j=m

P(ym | x, y1, . . . , ym−1) .

Learning relies on constructing probabilistic classifiers for

P(ym|x, y1, . . . , ym−1) ,

independently for each m = 1, . . . , l .
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PROBABILISTIC CLASSIFIER CHAINS

Inference relies on exploiting a probability tree:

x

P(y1 = 0 | x) = 0.4

P(y2=0 | y1=0, x)=0.0

P(y=(0, 0) | x)=0

y2 = 0

P(y2=1 | y1=0, x)=1.0

P(y=(0, 1) | x)=0.4

y2 = 1

y1 = 0

P(y1 = 1 | x) = 0.6

P(y2=0 | y1=1, x)=0.4

P(y=(1, 0) | x)=0.24

y2 = 0

P(y2=1 | y1=1, x)=0.6

P(y=(1, 1) | x)=0.36

y2 = 1

y1 = 1

For subset 0/1 loss one needs to find h(x) = argmaxyP(y | x).

Greedy and approximate search techniques with guarantees exist.

Other losses: compute the prediction on a sample from P(y | x).

Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012.
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LOW-RANK APPROXIMATION

Low rank = some structure is shared across targets

Typically perform low-rank approx of param matrix:

min
Θ

∥Y − ΦΘ∥2
F + λ rank(Θ)

Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.
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LOW-RANK APPROXIMATION

Θ: parameter matrix of dimensionality p × l

p: the number of (projected) features

l : the number of targets

Assume a low-rank structure of A:
U × V = A

We can write Θ = UV and Θx = UVx

V is a p × l̂ matrix

U is an l̂ × l matrix

l̂ is the rank of Θ
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