INDEPENDENT MODELS

• The most naive way to make multi-target predictions: learning a model for each target independently.

- In multi-label classification this approach is also known as *binary* relevance learning.
- Advantage: easy to realize, as for single-target prediction we have a wealth of methods available.

INDEPENDENT MODELS

• Assume a linear basis function model for the *m*-th target:

$$f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\mathsf{T}} \phi(\mathbf{x})$$

 θ_k is target-specific parameter and ϕ some feature mapping.

- Use this with with large nr of targets.
- We optimize jointly:

$$\begin{split} \min_{\Theta} \| \mathbf{Y} - \Phi \Theta \|_{F}^{2} + \sum_{m=1}^{l} \lambda_{m} \| \boldsymbol{\theta}_{m} \|^{2} \,, \\ \| \boldsymbol{B} \|_{F}^{2} &= \sqrt{\sum_{i=1}^{n} \sum_{m=1}^{l} B_{i,m}^{2}} \text{ is Frobenius norm for } \boldsymbol{B} \in \mathbb{R}^{n \times l} \text{ and} \\ \Phi &= \begin{bmatrix} \phi(\mathbf{x}^{(1)})^{\top} \\ \vdots \\ \phi(\mathbf{x}^{(n)})^{\top} \end{bmatrix} \quad \Theta = \begin{bmatrix} \boldsymbol{\theta}_{1} & \cdots & \boldsymbol{\theta}_{l} \end{bmatrix}. \end{split}$$

Frobenius norm = sum of SSE-s of all targets

INDEPENDENT MODELS

The experimental results section of a typical MTP paper:

× 0 0 × × ×

 \rightsquigarrow Independent models don't exploit target deps, compared to more sophisticated methods, seems to be key for better performance.

ENFORCING SIMILARITY IN DEEP LEARNING

× 0 0 × 0 × ×

MEAN-REGULARIZED MULTI-TASK LEARNING

- Models for similar targets should behave similarly
- So params should be similar

• Approach: Bias parameter vectors towards mean vector:

$$\min_{\Theta} \|Y - \Phi\Theta\|_F^2 + \lambda \sum_{m=1}^{l} \|\theta_m - \frac{1}{l} \sum_{m'=1}^{l} \theta_{m'}\|^2$$

Evgeniou and Pontil, 2004

Х

 $\times \times$

STACKING

- Originally, general ensemble learning technique.
- Level 1: apply series of ML methods on the same dataset
- Level 2: apply ML method to a new dataset consisting of the predictions obtained at level 1

× × ×

▶ Wolpert, 1992

STACKING APPLIED TO MTP

- Level 1: learn all *f_k*(**x**) independently
- Level 2: learn model for each target independently, using predictions of level 1 \rightsquigarrow $f(\mathbf{x}) = g(f_1(\mathbf{x}), \dots, f_l(\mathbf{x}))$ Or: $f(\mathbf{x}) = g(f_1(\mathbf{x}), \dots, f_l(\mathbf{x}), \mathbf{x})$

- Advantages: easy to implement and general
- Has been shown to avoid overfitting in multivariate regression
- If level 2 learner uses regularization ~→ models are forced to learn similar parameters for different targets.

• Cheng and Hüllermeier, 2009

STACKING VS BINARY RELEVANCE: EXAMPLE

• Compare F1-Score of random forest with stacking vs random forest with binary relevance on different multilabel datasets:

	birds	emotions	enron	genbase	image	langLog	reuters	scene	slashdot	yeast
BR(rf) F1-Score	0.637	0.620	0.578	0.989	0.431	0.319	0.671	0.616	0.441	0.615
STA(rf) F1-Score	0.646	0.634	0.583	0.986	0.446	0.317	0.685	0.633	0.453	0.624

- F1-Score is decomposed over targets.
- NB: Stacking slightly outperforms binary relevance on average.
- For more details, please refer to Probst et al., 2017).

