INDEPENDENT MODELS

@ The most naive way to make multi-target predictions: learning a
model for each target independently.
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@ In multi-label classification this approach is also known as binary
relevance learning.

@ Advantage: easy to realize, as for single-target prediction we have
a wealth of methods available.
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INDEPENDENT MODELS
@ Assume a linear basis function model for the m-th target:

fk(x) = OII(b(X),
0, is target-specific parameter and ¢ some feature mapping.

@ Use this with with large nr of targets.
@ We optimize jointly:
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Frobenius norm = sum of SSE-s of all targets
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INDEPENDENT MODELS
The experimental results section of a typical MTP paper: O O X
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~ Independent models don’t exploit target deps, compared to more
sophisticated methods, seems to be key for better performance.
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ENFORCING SIMILARITY IN DEEP LEARNING

Commonly-used architecture: weight sharing in the final layer with m
nodes, i.e., weight sharing among the targets
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» Caruana, 1997
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MEAN-REGULARIZED MULTI-TASK LEARNING

Target 1

@ Models for similar targets
should behave similarly Target 2

@ So params should be similar

Target 3

@ Approach: Bias parameter vectors towards mean vector:
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» Evgeniou and Pontil, 2004
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https://doi.org/10.1145/1014052.1014067

STACKING

@ Originally, general ensemble learning technique.
@ Level 1: apply series of ML methods on the same dataset
@ Level 2: apply ML method to a new dataset consisting of the

predictions obtained at level 1

Level 2

Level 1 f1 f2 f3 f4

» Wolpert, 1992
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https://doi.org/10.1016/S0893-6080(05)80023-1

STACKING APPLIED TO MTP

@ Level 1: learn all f,(x) Level 2 ‘ ‘ ‘ ‘

independently

@ Level 2: learn model for each

target independently, using Level 1 (fi A f, f,

predictions of level 1 ~~

f(X) = g(f‘I (X)’ SERR) f/(X))

Or:

f(x) = g(fi(x), ..., fi(x),x) X
@ Advantages: easy to implement and general

@ Has been shown to avoid overfitting in multivariate regression

@ If level 2 learner uses regularization ~» models are forced to learn
similar parameters for different targets.

» Cheng and Hullermeier, 2009
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https://doi.org/10.1007/978-3-642-04180-8_6

STACKING VS BINARY RELEVANCE: EXAMPLE

@ Compare F1-Score of random forest with stacking vs random
forest with binary relevance on different multilabel datasets:

birds emotions enron genbase image langlLog reuters scene slashdot yeast

BR(rf) F1-Score  0.637 0.620 0.578 0.989 0.431 0.319 0.671 0.616 0.441 0.615
STA(rf) F1-Score  0.646 0.634 0.583 0.986 0.446 0.317 0.685 0.633 0.453 0.624

@ F1-Score is decomposed over targets.
@ NB: Stacking slightly outperforms binary relevance on average.
@ For more details, please refer to CEEEEENEID.
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https://journal.r-project.org/archive/2017/RJ-2017-012/RJ-2017-012.pdf

