INDEPENDENT MODELS

The most naive way to make multi-target predictions: learning a model for each target independently.

- In multi-label classification this approach is also known as *binary relevance learning.*
- Advantage: easy to realize, as for single-target prediction we have a wealth of methods available.

INDEPENDENT MODELS

Assume a linear basis function model for the *m*-th target:

$$
f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\mathsf{T}} \phi(\mathbf{x}),
$$

 θ_k is target-specific parameter and ϕ some feature mapping.

- Use this with with large nr of targets.
- We optimize jointly:

$$
\min_{\Theta} ||Y - \Phi \Theta||_F^2 + \sum_{m=1}^l \lambda_m ||\theta_m||^2,
$$

$$
||B||_F^2 = \sqrt{\sum_{i=1}^n \sum_{m=1}^l B_{i,m}^2}
$$
 is Frobenius norm for $B \in \mathbb{R}^{n \times l}$ and

$$
\Phi = \begin{bmatrix} \phi(\mathbf{x}^{(1)})^\top \\ \vdots \\ \phi(\mathbf{x}^{(n)})^\top \end{bmatrix} \qquad \Theta = [\theta_1 \quad \cdots \quad \theta_l].
$$

Frobenius norm = sum of SSE-s of all targets

INDEPENDENT MODELS

The experimental results section of a typical MTP paper:

X

 \rightsquigarrow Independent models don't exploit target deps, compared to more sophisticated methods, seems to be key for better performance.

ENFORCING SIMILARITY IN DEEP LEARNING

 $\boldsymbol{\mathsf{X}}$ **XX**

 \triangleright [Caruana, 1997](DOI:10.1016/b978-1-55860-307-3.50012-5)

MEAN-REGULARIZED MULTI-TASK LEARNING

X X X

- Models for similar targets should behave similarly
- So params should be similar

Approach: Bias parameter vectors towards mean vector:

$$
\min_{\Theta} \|Y - \Phi \Theta\|_F^2 + \lambda \sum_{m=1}^l \|\theta_m - \frac{1}{l} \sum_{m'=1}^l \theta_{m'}\|^2
$$

▶ [Evgeniou and Pontil, 2004](https://doi.org/10.1145/1014052.1014067)

STACKING

- Originally, general ensemble learning technique.
- Level 1: apply series of ML methods on the same dataset
- Level 2: apply ML method to a new dataset consisting of the predictions obtained at level 1

X \times \times

[Wolpert, 1992](https://doi.org/10.1016/S0893-6080(05)80023-1)

STACKING APPLIED TO MTP

- Level 1: learn all $f_k(\mathbf{x})$ independently
- **•** Level 2: learn model for each target independently, using predictions of level 1 \rightsquigarrow $f(\mathbf{x}) = g(f_1(\mathbf{x}), \ldots, f_l(\mathbf{x}))$ Or: $f(\mathbf{x}) = g(f_1(\mathbf{x}), \ldots, f_l(\mathbf{x}), \mathbf{x})$

- Advantages: easy to implement and general
- Has been shown to avoid overfitting in multivariate regression
- \bullet If level 2 learner uses regularization \rightsquigarrow models are forced to learn similar parameters for different targets.

[Cheng and Hüllermeier, 2009](https://doi.org/10.1007/978-3-642-04180-8_6)

STACKING VS BINARY RELEVANCE: EXAMPLE

Compare F1-Score of random forest with stacking vs random forest with binary relevance on different multilabel datasets:

- F1-Score is decomposed over targets.
- NB: Stacking slightly outperforms binary relevance on average.
- \bullet For more details, please refer to \bullet [Probst et al., 2017](https://journal.r-project.org/archive/2017/RJ-2017-012/RJ-2017-012.pdf).

