MULTI-TARGET PREDICTION: MOTIVATION

- ullet Conventional supervised learning: Label space ${\mathcal Y}$ is 1-D.
- Multi-target prediction (MTP): multiple targets of mixed types (binary, nominal, ordinal, real-valued).
- Multi-label Emotions Dataset: 4 emotions of a music piece.
 Multiple emotions may be attributed to a single piece. Mutual information of the labels are:

	Calm	Quiet	Sad	Angry
Calm	1.000	0.073	0.018	0.290
Quiet	0.073	1.000	0.241	0.164
Sad	0.018	0.241	1.000	0.067
Angry	0.290	0.164	0.067	1.000

• It might be better to tackle targets simultaneously.

MULTI-TARGET PREDICTION: CHARACTERISTICS

Characterized by instances $\mathbf{x} \in \mathcal{X}$ and targets $m \in \{1, 2, ..., I\}$ with following properties:

- A training set $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$, where $\mathbf{y}^{(i)} = (y_1^{(i)}, \dots, y_l^{(i)})$, with $y_m^{(i)} \in \mathcal{Y}_m$ is label for target m.
- *n* instances and *l* targets \rightsquigarrow Labels $y_m^{(i)}$ can be arranged in an $n \times l$ matrix **Y**. Note **Y** may have missing values.
- Target spaces \mathcal{Y}_m can be nominal, ordinal or real-valued.
- Goal: predict scores for any pair $(\mathbf{x}, m) \in \mathcal{X} \times \{1, 2, \dots, l\}$.

In conventional MTP setting: no available side information for targets.

MULTIVARIATE REGRESSION

Target space $\mathcal{Y}_m = \mathbb{R} \ \forall m \in \{1, 2, \dots, l\}$.

		Mol1	Mol2	Mol3	Mol4	Mol5	Mol6
01101		1,3	0,2	1,4	1,7	3,5	1,3
00111	·	2	1,7	1,5	7,5	8,2	7,6
01110	į	0,2	0	0,3	0,4	1,2	2,2
10001		3,1	1,1	1,3	1,1	1,7	5,2
01011	4	4,7	2,1	2,5	1,5	2,3	8,5
11110	•	?	?	?	?	?	?

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Predict binding strength between proteins (rows) and molecules (columns).

MULTI-LABEL CLASSIFICATION

Target space $\mathcal{Y}_m = \{0, 1\} \ \forall m \in \{1, 2, ..., I\}$

		Tennis	Football	Biking	Movies	TV	Belgium
01101	Text1	0	1	0	0	1	1
00111	Text2	1	0	0	0	0	1
01110	Text3	0	0	0	1	1	0
10001	Text4	0	0	1	0	1	0
01011	Text5	1	0	0	1	0	0
11110	Text6	?	?	?	?	?	?

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Assign documents (rows) to category tags (columns).

LABEL RANKING

In *label ranking*, each instance is associated with a ranking of targets. $\mathcal{Y}_m = \{1, \ldots, l\} \ \forall m$, and labels (i.e., ranks) $y_m^{(i)} \neq y_k^{(i)} \forall m \neq k$.

		Tennis	Football	Biking	Skating	Running	Walking
01101	User 1	2	1	4	3	5	6
00111	User 2	1	4	3	5	6	2
01110	User 3	4	5	1	2	3	6
10001	User 4	4	3	2	6	1	5
01011	User t5	1	3	5	2	6	4
11110	User 6	?	?	?	?	?	?

Example: Predict for users (rows) their preferences over specific activities (columns).

MULTI-TASK LEARNING

- Not all targets are relevent for all instances. E.g., a student may only attend one school, other labels are irrelavent.
- Label space is homogenous across columns of \mathbf{Y} , e.g., $\mathcal{Y}_m = \{0,1\}$ or $\mathcal{Y}_m = \mathbb{R}$ for all m.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Predict for students (rows) the final grades for a specific high-school course (columns).

REMARKS

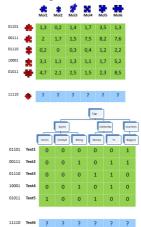
- It is also possible when the *m*-th task is multiclass classification.
 That is, f(x)_m ∈ R^{g_m} is the probability predictions for g_m classes.
 → The techniques for multi-target learning are also applicable under this setting, notation becomes cumbersome.
- Target space can be inhomogeneous, e.g. $\mathcal{Y}_m = \{0, 1\}$ and $\mathcal{Y}_k = \mathbb{R}$.
 - → A mixture of multi-label classification and multivariate regression.

SIDE INFORMATION ON TARGETS

• Sometimes, additional side information about targets is available.

 Extra representation for target molecules in drug design (structured representation).

Taxonomy on document categories (hierarchy).



SIDE INFORMATION ON TARGETS / 2

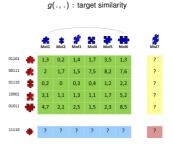
 Information about schools (geographical location, school reputation) in student mark forecasting (feature representation).

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (<u>URL</u>).

- Such problems are referred to as dyadic or link prediction.
- Labels $y_m^{(i)}$ can be arranged in a matrix **Y**, which is often sparse.
- Thus, dyadic prediction can be seen as multi-target prediction with target features.

INDUCTIVE VS. TRANSDUCTIVE LEARNING

- In previous problems,
 - predictions need to be generated for novel instances,
 - targets are known beforehand and observed during training.
- These problems are *inductive* w.r.t. instances and *transductive* w.r.t. targets.
- Side information is important for generalizing to novel targets.
 - a novel target molecule in the drug design,
 - a novel tag in the document annotation,



Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

SUBDIVISION OF DIFFERENT LEARNING SETTINGS

- Setting A transductive w.r.t. targets and instances. Goal: predict missing values of score matrix (matrix completion).
- Setting B transductive w.r.t. targets and inductive w.r.t. instances (classical supervised learning).
- Setting C inductive w.r.t. targets and transductive w.r.t. instances.
 Some targets are unobserved during training but may appear at prediction time.
- Setting D inductive w.r.t. both targets and instances (zero-shot learning).

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (<u>URL</u>).

