OVERSAMPLING: SMOTE

@ SMOTE creates synthetic instances of minority class.
@ Interpolate between neighboring minority instances.

@ Instances are created in X rather thanin X' x ).

@ Algorithm: For each minority class instance:

e Find its k nearest minority neighbors.

o Randomly select one of these neighbors.

e Randomly generate new instances along the lines connecting
the minority example and its selected neighbor.
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SMOTE: GENERATING NEW EXAMPLES

o Let x() be the feature of the minority instance and let xU) be its
nearest neighbor. The line connecting the two instances is
(1= x4 = x0 4 A0 — x0)

where X € [0, 1]. )
@ By sampling a A € [0, 1], say A\, we create a new instance

%0 — x0) 4 X(x0) — x0)
Example: Let x() = (1,2)T and x() = (3,1)T. Assume A ~ 0.25.
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION CONTINUED
After 100 iterations of SMOTE for K = 2 we get:
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SMOTE: VISUALIZATION CONTINUED
After 100 iterations of SMOTE for K = 3 we get:
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SMOTE: EXAMPLE

@ Iris data set with 3 classes and 50 instances per class.
@ Make the data set “imbalanced”:

e relabel one class as positive
e relabel two other classes as negative
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SMOTE enriches minority class feature space.
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SMOTE: DIS-/ADVANTAGES

@ Generalize decision region for minority class instead of making it
quite specific, such as by random oversampling.

@ Well-performed among the oversampling techniques and is the
basis for many oversampling methods: Borderline-SMOTE,
LN-SMQOTE, ... (over 90 extensions!)

@ Prone to overgeneralizing as it pays no attention to majority class.
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COMPARISON OF SAMPLING TECHNIQUES

@ Compare different sampling techniques on a binarized version of
Optdigits dataset for optical recognition of handwritten digits.

@ Use random forest with 100 trees, 5-fold cv, and F1-Score.

Sampling technique Class ratio F1-Score

None 0.11 0.9239
Undersampling 0.68 0.9538
Oversampling 0.69 0.9538
SMOTE 0.79 0.9576

@ Class ratios could be tuned (here done manually).
@ Sampling techniques outperform base learner.
@ SMOTE leads sampling techniques, although by a small margin.
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