SAMPLING METHODS: OVERVIEW

- Balance training data distribution to perform better on minority classes.
- Independent of classifier ~> very flexible and general.
- Three groups:

- Undersampling Removing instances of majority class(es).
- Oversampling Adding/Creating new instances of minority class(es). (Slower, but usually works better.)
- Hybrid Combining both methods.

Oversampling

0 0 X X 0 X X

RANDOM UNDERSAMPLING/OVERSAMPLING

- Random oversampling (ROS):
 - Randomly replicate minority instances.
 - Prone to overfitting due to multiple tied instances.
- Random undersampling (RUS):
 - Randomly eliminate majority instances.
 - Might remove informative instances and destroy important concepts in data.
- Better: Introduce heuristics in removal process (RUS) and do not create exact copies (ROS).

× 0 0 × 0 × × ×

UNDERSAMPLING: TOMEK LINKS

- Remove "noisy borderline" examples (very close observations of different classes) of majority class(es).
- Let $E^{(i)} = (\mathbf{x}^{(i)}, y^{(i)})$ and $E^{(j)} = (\mathbf{x}^{(j)}, y^{(j)})$ be two data points in \mathcal{D} .
- A pair $(E^{(i)}, E^{(j)})$ is called *Tomek link* iff there is no other data point $E^{(k)} = (\mathbf{x}^{(k)}, y^{(k)})$ such that $d(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ or $d(\mathbf{x}^{(i)}, \mathbf{x}^{(k)}) < d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ holds,

where *d* is some distance on \mathcal{X} .

- $y^{(i)} \neq y^{(j)} \rightarrow$ noisy borderline examples.
- Remove majority instance in each data pair in a Tomek link where $y^{(i)} \neq y^{(j)}$.

Franciso Herrera (2013), Imbalanced Classification: Common Approaches and Open Problems (<u>URL</u>).

UNDERSAMPLING: OTHER APPROACHES

- Neighborhood cleaning rule (NCL):
 - Find 3 nearest neighbors for each $(\mathbf{x}^{(i)}, y^{(i)})$ in \mathcal{D} .
 - If y⁽ⁱ⁾ is majority class and 3-NN classifies it as minority → Remove (x⁽ⁱ⁾, y⁽ⁱ⁾) from D.
 - If $y^{(i)}$ is minority class and 3-NN classifies it as majority \rightsquigarrow Remove 3 nearest neighbors from \mathcal{D} .
- Condensed Nearest Neighbor (CNN): Construct a minimally consistent subset *D* of *D*.
- One-sided selection (OSS): Tomek link + CNN
- CNN + Tomek link: to reduce computation of finding Tomek links → first use CNN and then remove the Tomek links.
- Clustering approaches: Class Purity Maximization (CPM) and Undersampling based on Clustering (SBC).

× 0 0 × 0 × × ×