RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

- We encourage readers to first go through Chapter 04.08 in I2ML
- In binary classification ($\mathcal{Y} = \{-1, +1\}$):

		True C		
		+	-	
Classification	+	TP	FP	$\rho_{PPV} = \frac{\#TP}{\#TP+\#FP}$
ŷ	-	FN	TN	$ \rho_{NPV} = \frac{\#TN}{\#FN + \#TN} $
		$\rho_{TPR} = \frac{\# TP}{\# TP + \# FN}$	$ \rho_{TNR} = \frac{\#\text{TN}}{\#\text{FP} + \#\text{TN}} $	$ \rho_{ACC} = \frac{\# TP + \# TN}{TOTAL} $

• F_1 score balances Recall (ρ_{TPR}) and Precision (ρ_{PPV}):

$$\rho_{F_1} = 2 \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\rho_{PPV} + \rho_{TPR}}$$

- Note that ρ_{F_1} does not account for TN.
- Does ρ_{F1} suffer from data imbalance like accuracy does?

F1 SCORE IN BINARY CLASSIFICATION

 F_1 is the **harmonic mean** of $\rho_{PPV} \& \rho_{TPR}$. \rightarrow Property of harmonic mean: tends more towards the **lower** of two combined values.

- A model with $\rho_{TPR} = 0$ or $\rho_{PPV} = 0$ has $\rho_{F_1} = 0$.
- Always predicting "negative": $\rho_{TPR} = \rho_{F_1} = 0$
- Always predicting "positive": $\rho_{TPR} = 1 \Rightarrow \rho_{F_1} = 2 \cdot \rho_{PPV} / (\rho_{PPV} + 1) = 2 \cdot n_+ / (n_+ + n),$ \rightsquigarrow small when $n_+ (= TP + FN = TP)$ is small.
- Hence, *F*₁ score is more robust to data imbalance than accuracy.

F_{β} IN BINARY CLASSIFICATION

- F_1 puts equal weights to $\frac{1}{\rho_{PPV}} \& \frac{1}{\rho_{TPR}}$ because $F_1 = \frac{2}{\frac{1}{\rho_{PPV}} + \frac{1}{\rho_{TPR}}}$.
- F_{β} puts β^2 times of weight to $\frac{1}{\rho_{TPR}}$:

$$F_{\beta} = \frac{1}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\rho_{TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\rho_{PPV}}}$$
$$= (1+\beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

			_					
ртрк	1.0	0	0.33	0.57	0.75	0.89	1	
	0.8-	0	0.32	0.53	0.69	0.8	0.89	
	0.6	0	0.3	0.48	0.6	0.69	0.75	
	0.4	0	0.27	0.4	0.48	0.53	0.57	
	0.2	0	0.2	0.27	0.3	0.32	0.33	
	0.0	0					0	
		0.0	0.2		0.6 PV	0.8	1.0	

× × 0 × × ×

- $\beta \gg 1 \rightsquigarrow F_{\beta} \approx \rho_{TPR};$
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$.

G SCORE AND G MEAN

• G score uses geometric mean:

$$\rho_{\rm G} = \sqrt{\rho_{\rm PPV} \cdot \rho_{\rm TPR}}$$

- Geometric mean tends more towards the **lower** of the two combined values.
- Geometric mean is **larger** than harmonic mean.

 1.0.
 0.
 0.45
 0.63
 0.77
 0.89
 1

 0.6.
 0.
 0.4
 0.57
 0.69
 0.8
 0.89

 0.6.
 0.
 0.4
 0.57
 0.69
 0.8
 0.89

 0.6.
 0.
 0.35
 0.49
 0.6
 0.69
 0.77

 0.4.
 0.4
 0.28
 0.4
 0.49
 0.57
 0.63

 0.2.
 0.2
 0.28
 0.35
 0.4
 0.43
 0.4

 0.0.
 0
 0.2
 0.28
 0.4
 0.49
 0.57
 0.63

 0.0.
 0
 0.2
 0.28
 0.4
 0.49
 0.57
 0.63

 0.0.
 0
 0.2
 0.28
 0.35
 0.4
 0.45
 0.6

 0.0.
 0
 0
 0
 0
 0
 0
 0
 0

 0.0.
 0.2
 0.4
 0.66
 0.8
 1.0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

• Closely related is the G mean:

$$\rho_{Gm} = \sqrt{\rho_{TNR} \cdot \rho_{TPR}}.$$

It also considers TN.

• Always predicting "negative": $\rho_G = \rho_{Gm} = 0 \rightsquigarrow$ Robust to data imbalance!

BALANCED ACCURACY

Balanced accuracy (BAC) balances
 *ρ*_{TNR} and *ρ*_{TPR}:

$$\rho_{BAC} = \frac{\rho_{TNR} + \rho_{TPR}}{2}$$

- If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.
- However, if a classifier always predicts "negative" for an imbalanced data set, i.e. $n_+ \ll n_-$, then $\rho_{BAC} \ll \rho_{ACC}$. It also considers TN.

MATTHEWS CORRELATION COEFFICIENT

• Recall: Pearson correlation coefficient (PCC):

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

- View "predicted" and "true" classes as two binary random variables.
- Using entries in confusion matrix to estimate the PCC, we obtain MCC:

$$\rho_{MCC} = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

- In contrast to other metrics:
 - MCC uses all entries of the confusion matrix;
 - MCC has value in [-1, 1].

MATTHEWS CORRELATION COEFFICIENT

$$\rho_{MCC} = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}$$

- *ρ_{MCC}* ≈ 1 → nearly zero error → good classification, i.e., strong correlation between predicted and true classes.
- $\rho_{\rm MCC} \approx$ 0 \rightsquigarrow no correlation, i.e., not better than random guessing.
- $\rho_{MCC} \approx -1 \rightsquigarrow$ reversed classification, i.e., switch labels.
- Previous measures requires defining positive class. But MCC does not depend on which class is the positive one.

× 0 0 × × ×

MULTICLASS CLASSIFICATION

- n_{jj} : the number of *i* instances classified as *j*.
- $n_i = \sum_{j=1}^{g} n_{ji}$ the total number of *i* instances.
- Class-specific metrics:
 - True positive rate (**Recall**): $\rho_{TPB_i} = \frac{n_{ii}}{n_i}$
 - True negative rate $\rho_{TNR_i} = \frac{\sum_{j \neq i} n_{jj}}{n n_i}$
 - Positive predictive value (**Precision**) $\rho_{PPR_j} = \frac{n_{jj}}{\sum_{i=1}^{g} n_{ji}}$.

MACRO F₁ SCORE

• Average over classes to obtain a single value:

$$\rho_{\text{mMETRIC}} = \frac{1}{g} \sum_{i=1}^{g} \rho_{\text{METRIC}_i},$$

where *METRIC_i* is a class-specific metric such as *PPV_i*, *TPR_i* of class *i*.

• With this, one can simply define a **macro** *F*₁ score:

$$\rho_{mF_1} = 2 \cdot \frac{\rho_{mPPV} \cdot \rho_{mTPR}}{\rho_{mPPV} + \rho_{mTPR}}$$

- Problem: each class equally weighted ~>> class sizes are not considered.
- How about applying different weights to the class-specific metrics?

WEIGHTED MACRO F₁ SCORE

- For imbalanced data sets, give more weights to minority classes.
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$.

$$\rho_{wmMETRIC} = rac{1}{g}\sum_{i=1}^{g}
ho_{METRIC_i} w_i,$$

× × ×

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class *i*.

- Example: $w_i = \frac{n-n_i}{(g-1)n}$ are suitable weights.
- Weighted macro *F*₁ score:

$$\rho_{\textit{wmF}_{1}} = \mathbf{2} \cdot \frac{\rho_{\textit{wmPPV}} \cdot \rho_{\textit{wmTPR}}}{\rho_{\textit{wmPPV}} + \rho_{\textit{wmTPR}}}$$

- This idea gives rise to a weighted macro G score or weighted BAC.
- Usually, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would **overweight** majority classes.

OTHER PERFORMANCE MEASURES

- "Micro" versions, e.g., the micro *TPR* is $\frac{\sum_{i=1}^{g} TP_i}{\sum_{i=1}^{g} TP_i + FN_i}$
- MCC can be extended to:

$$\rho_{MCC} = \frac{n \sum_{i=1}^{g} n_{ii} - \sum_{i=1}^{g} \hat{n}_{i} n_{i}}{\sqrt{(n^2 - \sum_{i=1}^{g} \hat{n}_{i}^2)(n^2 - \sum_{i=1}^{g} n_{i}^2)}},$$

where $\hat{n}_i = \sum_{j=1}^{g} n_{ij}$ is the total number of instances classified as *i*.

• Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

0 0 X X 0 X X

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on other characteristics → No golden answer to this question.
- Depends on application and importance of characteristics.
- However, it is clear that accuracy usage is inappropriate if the data set is imbalanced. → Use alternative metrics.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g., MCC and BAC.

× < 0 × × ×