
RECAP: PERFORMANCE MEASURES FOR
BINARY CLASSIFICATION

We encourage readers to first go through Chapter 04.08 in I2ML .

In binary classification (Y = {−1,+1}):

True Class y
+ −

Classification + TP FP ρPPV = #TP
#TP+#FP

ŷ − FN TN ρNPV = #TN
#FN+#TN

ρTPR = #TP
#TP+#FN ρTNR = #TN

#FP+#TN ρACC = #TP+#TN
TOTAL

F1 score balances Recall (ρTPR) and Precision (ρPPV ):

ρF1 = 2 ·
ρPPV · ρTPR

ρPPV + ρTPR

Note that ρF1 does not account for TN.

Does ρF1 suffer from data imbalance like accuracy does?
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https://slds-lmu.github.io/i2ml/chapters/04_evaluation/04-08-measures-classification/


F1 SCORE IN BINARY CLASSIFICATION

F1 is the harmonic mean of ρPPV & ρTPR .
→ Property of harmonic mean: tends more
towards the lower of two combined values.
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A model with ρTPR = 0 or ρPPV = 0 has ρF1 = 0.

Always predicting “negative”: ρTPR = ρF1 = 0

Always predicting “positive”:
ρTPR = 1 ⇒ ρF1 = 2 · ρPPV/(ρPPV + 1) = 2 · n+/(n+ + n),
⇝ small when n+(= TP + FN = TP) is small.

Hence, F1 score is more robust to data imbalance than accuracy.
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Fβ IN BINARY CLASSIFICATION

F1 puts equal weights to 1
ρPPV

& 1
ρTPR

because F1 = 2
1

ρPPV
+ 1

ρTPR

.

Fβ puts β2 times of weight to 1
ρTPR

:

Fβ =
1

β2

1+β2 · 1
ρTPR

+ 1
1+β2 · 1

ρPPV

= (1 + β2) · ρPPV · ρTPR

β2ρPPV + ρTPR
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β ≫ 1 ⇝ Fβ ≈ ρTPR ;

β ≪ 1 ⇝ Fβ ≈ ρPPV .
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G SCORE AND G MEAN

G score uses geometric mean:

ρG =
√
ρPPV · ρTPR

Geometric mean tends more
towards the lower of the two
combined values.

Geometric mean is larger than
harmonic mean.
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Closely related is the G mean:

ρGm =
√
ρTNR · ρTPR .

It also considers TN.

Always predicting “negative”: ρG = ρGm = 0⇝ Robust to data imbalance!
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BALANCED ACCURACY

Balanced accuracy (BAC) balances
ρTNR and ρTPR :

ρBAC =
ρTNR + ρTPR
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If a classifier attains high accuracy on both classes or the data set is almost
balanced, then ρBAC ≈ ρACC .

However, if a classifier always predicts “negative” for an imbalanced data set, i.e.
n+ ≪ n−, then ρBAC ≪ ρACC . It also considers TN.
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MATTHEWS CORRELATION COEFFICIENT

Recall: Pearson correlation coefficient (PCC):

Corr(X ,Y ) =
Cov(X ,Y )

σXσY

View “predicted” and “true” classes as two binary random variables.

Using entries in confusion matrix to estimate the PCC, we obtain MCC:

ρMCC =
TP · TN − FP · FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

In contrast to other metrics:

MCC uses all entries of the confusion matrix;
MCC has value in [−1, 1].
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MATTHEWS CORRELATION COEFFICIENT

ρMCC =
TP · TN − FP · FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

ρMCC ≈ 1⇝ nearly zero error⇝ good classification, i.e., strong
correlation between predicted and true classes.

ρMCC ≈ 0⇝ no correlation, i.e., not better than random guessing.

ρMCC ≈ −1⇝ reversed classification, i.e., switch labels.

Previous measures requires defining positive class. But MCC does not
depend on which class is the positive one.

© Advanced Machine Learning – 7 / 12



MULTICLASS CLASSIFICATION

True Class y
1 2 . . . g

Classification 1 n11 n12 . . . n1g
(True 1’s) (False 1’s for 2’s) . . . (False 1’s for g’s)

2 n21 n22 . . . n2g
ŷ (False 2’s for 1’s) (True 2’s) . . . (False 2’s for g’s)

.

.

.
.
.
.

.

.

. . . .

.

.

.
g ng1 ng2 . . . ngg

(False g’s for 1’s) (False g’s for 2’s) . . . (True g’s)

nji : the number of i instances classified as j .

ni =
∑g

j=1 nji the total number of i instances.

Class-specific metrics:

True positive rate (Recall): ρTPRi =
nii
ni

True negative rate ρTNRi =
∑

j ̸=i njj

n−ni

Positive predictive value (Precision) ρPPRj =
njj∑g
i=1 nji

.
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MACRO F1 SCORE

Average over classes to obtain a single value:

ρmMETRIC =
1
g

g∑
i=1

ρMETRICi ,

where METRICi is a class-specific metric such as PPVi , TPRi of class i .

With this, one can simply define a macro F1 score:

ρmF1 = 2 ·
ρmPPV · ρmTPR

ρmPPV + ρmTPR

Problem: each class equally weighted⇝ class sizes are not considered.

How about applying different weights to the class-specific metrics?

© Advanced Machine Learning – 9 / 12



WEIGHTED MACRO F1 SCORE

For imbalanced data sets, give more weights to minority classes.

w1, . . . ,wg ∈ [0, 1] such that wi > wj iff ni < nj and
∑g

i=1 wi = 1.

ρwmMETRIC =
1
g

g∑
i=1

ρMETRICi wi ,

where METRICi is a class-specific metric such as PPVi , TPRi of class i .

Example: wi =
n−ni

(g−1)n are suitable weights.

Weighted macro F1 score:

ρwmF1 = 2 · ρwmPPV · ρwmTPR

ρwmPPV + ρwmTPR

This idea gives rise to a weighted macro G score or weighted BAC.

Usually, weighted F1 score uses wi = ni/n. However, for imbalanced
data sets this would overweight majority classes.
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OTHER PERFORMANCE MEASURES

“Micro” versions, e.g., the micro TPR is
∑g

i=1 TPi∑g
i=1 TPi+FNi

MCC can be extended to:

ρMCC =
n
∑g

i=1 nii −
∑g

i=1 n̂ini√
(n2 −

∑g
i=1 n̂2

i )(n2 −
∑g

i=1 n2
i )
,

where n̂i =
∑g

j=1 nij is the total number of instances classified as i.

Cohen’s Kappa or Cross Entropy (see Grandini et al. (2021)) treat
"predicted" and "true" classes as two discrete random variables.
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WHICH PERFORMANCE MEASURE TO USE?

Since different measures focus on other characteristics⇝ No golden
answer to this question.

Depends on application and importance of characteristics.

However, it is clear that accuracy usage is inappropriate if the data set is
imbalanced. ⇝ Use alternative metrics.

Be careful with comparing the absolute values of the different measures,
as these can be on different “scales”, e.g., MCC and BAC.
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