IMBALANCED DATA SETS

- Class imbalance: Ratio of classes is significantly different.
- Consequence: Undesirable predictive behavior for smaller class.
- Example: Sampling from two Gaussian distributions

× < 0 × × ×

IMBALANCED DATA SETS: EXAMPLES

Domain	Task	Majority Class	Minor Class
Medicine	Predict tumor pathology	Benign	Malignant
Information retrieval	Find relevant items	Irrelevant items	Relevant items
Tracking criminals	Detect fraud emails	Non-fraud emails	Fraud emails
Weather prediction	Predict extreme weather	Normal weather	Tornado, hurricane

- Often, the minority class is the more important class.
- Imbalanced data can be a source of bias related to concept of fairness.

X

 $\times \times$

ISSUES WITH EVALUATING CLASSIFIERS

- Ideal case: correctly classify as many instances as possible \Rightarrow High accuracy, preferably 100%.
- In practice, we often obtain on imbalanced data sets: good performance on the majority class(es), a poor performance on the minority class(es).
- Reason: the classifier is biased towards the **majority** class(es), as predicting the majority class pays off in terms of accuracy.
- Focusing only on accuracy can lead to bad performance on minority class.
- Example:
 - Assume that only 0.5% of the patients have a disease,
 - Always predicting "no disease" leads to accuracy of 99.5%

ISSUES WITH EVALUATING CLASSIFIERS

× × 0 × ×

In each scenario, we have 10.000 obs in the negative class. Number of obs in positive class varies between 10.000, 1.000, 100, and 50. Train classifiers with 10-fold stratified cv. Evaluate via aggregated predictions on test set.

POSSIBLE SOLUTIONS

- Ideal performance metric: the learning is *properly* biased towards the minority class(es).
- Imbalance-aware performance metrics:
 - G-score
 - Balanced accuracy
 - Matthews Correlation Coefficient
 - Weighted macro F₁ score

× 0 0 × × ×

POSSIBLE SOLUTIONS

Approach	Main idea	Remark
Algorithm-level	Bias classifiers towards minority	Special knowledge about clas- sifiers is needed
Data-level	Rebalance classes by resampling	No modification of classifiers is needed
Cost-sensitive Learning	Introduce different costs for mis- classification when learning	Between algorithm- and data- level approaches
Ensemble-based	Ensemble learning plus one of three techniques above	-