
COST-SENSITIVE LEARNING: IN A NUTSHELL

Cost-sensitive learning:

Classical learning: data sets are balanced, and all errors have equal costs
We now assume given, unequal cost
And try to minimize them in expectation

Applications:

Medicine — Misdiagnosing as healthy vs. having a disease
(Extreme) Weather prediction — Incorrectly predicting that no hurricane occurs
Credit granting — Lending to a risky client vs. not lending to a trustworthy client.

Truth
Default Pays Back

Pred.
Default 0 10

Pays Back 1000 0

In these examples, the costs of a false
negative is much higher than the
costs of a false positive.

In some applications, the costs are
unknown⇝ need to be specified by
experts, or be learnt.

© Advanced Machine Learning – 1 / 6



COST MATRIX

Input: cost matrix C

True Class y
1 2 . . . g

Classification 1 C(1, 1) C(1, 2) . . . C(1, g)
2 C(2, 1) C(2, 2) . . . C(2, g)

ŷ

.

.

.
.
.
.

.

.

. . . .

.

.

.
g C(g, 1) C(g, 2) . . . C(g, g)

C(j, k) is the cost of classifying class k as j,

0-1-loss would simply be: C(j, k) = 1[j ̸=k]

C designed by experts with domain knowledge
1 Too low costs: not enough change in model, still costly errors
2 Too high costs: might never predict costly classes

© Advanced Machine Learning – 2 / 6



COST MATRIX FOR IMBALANCED LEARNING

Common heuristic for imbalanced data sets:

C(j, k) = nj
nk

with nk ≪ nj ,
misclassifying a minority class k as a majority class j
C(j, k) = 1 with nj ≪ nk ,
misclassifying a majority class k as a minority class j
0 for a correct classification

Imbalanced binary classification:

True class
y = 1 y = −1

Pred.
class

ŷ = 1 0 1
ŷ = -1 n−

n+
0

So: much higher costs for FNs

© Advanced Machine Learning – 3 / 6



MINIMUM EXPECTED COST PRINCIPLE

Suppose we have:

a cost matrix C
knowledge of the true posterior p(· | x)

Predict class j with smallest expected costs when marginalizing
over true classes:

EK∼p(· | x)(C(j,K )) =

g∑
k=1

p(k | x)C(j, k)

If we trust we trust a probabilistic classifier, we can convert its
scores to labels:

h(x) := argmin
j=1,...,g

g∑
k=1

πk(x)C(j, k).

Can be better to take a less probable class ( Elkan et. al. 2001 )

© Advanced Machine Learning – 4 / 6

https://dl.acm.org/doi/10.5555/1642194.1642224


OPTIMAL THRESHOLD FOR BINARY CASE

Optimal decisions do not change if

C is multiplied by positive constant
C is added with constant shift

Scale and shift C to get simpler C′:

True class
y = 1 y = −1

Pred.
class

ŷ = 1 C′(1, 1) 1
ŷ = -1 C′(−1, 1) 0

where

C′(−1, 1) = C(−1,1)−C(−1,−1)
C(1,−1)−C(−1,−1)

C′(1, 1) = C(1,1)−C(−1,−1)
C(1,−1)−C(−1,−1)

We predict x as class 1 if

EK∼p(· | x)(C
′(1,K )) ≤ EK∼p(· | x)(C

′(−1,K ))

© Advanced Machine Learning – 5 / 6



OPTIMAL THRESHOLD FOR BINARY CASE / 2

Let’s unroll the expected value and use C′:

p(−1 | x)C′(1,−1) + p(1 | x)C′(1, 1) ≤ p(−1 | x)C′(−1,−1) + p(1 | x)C′(−1, 1)

⇒ [1 − p(1 | x)] · 1 + p(1 | x)C′(1, 1) ≤ p(1 | x)C′(−1, 1)

⇒ p(1 | x) ≥ 1
C′(−1, 1)− C′(1, 1) + 1

⇒ p(1 | x) ≥ C(1,−1)− C(−1,−1)
C(−1, 1)− C(1, 1) + C(1,−1)− C(−1,−1)

= c∗

If even C(1, 1) = C(−1,−1) = 0, we get:

p(1 | x) ≥ C(1,−1)
C(−1, 1) + C(1,−1)

= c∗

Optimal threshold c∗ for probabilistic classifier

h(x) := 2 · 1[π(x)≥c∗] − 1

© Advanced Machine Learning – 6 / 6


