PROOF OF THE POSTERIOR OF BAYSIAN LM ## Proof: We want to show that - for a Gaussian prior on $\theta \sim \mathcal{N}(\mathbf{0}, \tau^2 \mathbf{I}_p)$ - for a Gaussian Likelihood $y \mid \mathbf{X}, \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{X}^{\top}\boldsymbol{\theta}, \sigma^2 \mathbf{I}_n)$ the resulting posterior is Gaussian $\mathcal{N}(\sigma^{-2}\mathbf{A}^{-1}\mathbf{X}^{\top}\mathbf{y},\mathbf{A}^{-1})$ with $\mathbf{A}:=\sigma^{-2}\mathbf{X}^{\top}\mathbf{X}+\frac{1}{\tau^{2}}\mathbf{I}_{p}$. Plugging in Bayes' rule and multiplying out yields $$\begin{split} \rho(\boldsymbol{\theta}|\mathbf{X},\mathbf{y}) &\propto & p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta})q(\boldsymbol{\theta}) \propto \exp\left[-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\boldsymbol{\theta})^\top(\mathbf{y}-\mathbf{X}\boldsymbol{\theta}) - \frac{1}{2\tau^2}\boldsymbol{\theta}^\top\boldsymbol{\theta}\right] \\ &= & \exp\left[-\frac{1}{2}\left(\underbrace{\sigma^{-2}\mathbf{y}^\top\mathbf{y}}_{\text{doesn't depend on }\boldsymbol{\theta}} - 2\sigma^{-2}\mathbf{y}^\top\mathbf{X}\boldsymbol{\theta} + \sigma^{-2}\boldsymbol{\theta}^\top\mathbf{X}^\top\mathbf{X}\boldsymbol{\theta} + \tau^{-2}\boldsymbol{\theta}^\top\boldsymbol{\theta}\right)\right] \\ &\propto & \exp\left[-\frac{1}{2}\left(\sigma^{-2}\boldsymbol{\theta}^\top\mathbf{X}^\top\mathbf{X}\boldsymbol{\theta} + \tau^{-2}\boldsymbol{\theta}^\top\boldsymbol{\theta} - 2\sigma^{-2}\mathbf{y}^\top\mathbf{X}\boldsymbol{\theta}\right)\right] \\ &= & \exp\left[-\frac{1}{2}\boldsymbol{\theta}^\top\underbrace{\left(\sigma^{-2}\mathbf{X}^\top\mathbf{X} + \tau^{-2}\mathbf{I}_{\boldsymbol{\rho}}\right)}_{:-\mathbf{A}}\boldsymbol{\theta} + \sigma^{-2}\mathbf{y}^\top\mathbf{X}\boldsymbol{\theta}\right] \end{split}$$ This expression resembles a normal density - except for the term in red! ## PROOF OF THE POSTERIOR OF BAYSIAN LM /2 **Note:** We need not worry about the normalizing constant since its mere role is to convert probability functions to density functions with a total probability of one. We subtract a (not yet defined) constant \boldsymbol{c} while compensating for this change by adding the respective terms ("adding 0"), emphasized in green: $$p(\theta|\mathbf{X},\mathbf{y}) \propto \exp\left[-\frac{1}{2}(\theta-c)^{\top}\mathbf{A}(\theta-c)-c^{\top}\mathbf{A}\theta + \underbrace{\frac{1}{2}c^{\top}\mathbf{A}c}_{\text{doesn't depend on }\theta} + \sigma^{-2}\mathbf{y}^{\top}\mathbf{X}\theta\right]$$ $$\propto \exp\left[-\frac{1}{2}(\theta-c)^{\top}\mathbf{A}(\theta-c)-c^{\top}\mathbf{A}\theta + \sigma^{-2}\mathbf{y}^{\top}\mathbf{X}\theta\right]$$ If we choose c such that $-c^{\top} \mathbf{A} \theta + \sigma^{-2} \mathbf{y}^{\top} \mathbf{X} \theta = 0$, the posterior is normal with mean c and covariance matrix \mathbf{A}^{-1} . Taking into account that \mathbf{A} is symmetric, this is if we choose $$\sigma^{-2}\mathbf{y}^{\top}\mathbf{X} = c^{\top}\mathbf{A}$$ $$\Leftrightarrow \quad \sigma^{-2}\mathbf{y}^{\top}\mathbf{X}\mathbf{A}^{-1} = c^{\top}$$ $$\Leftrightarrow \quad c = \sigma^{-2}\mathbf{A}^{-1}\mathbf{X}^{\top}\mathbf{y}$$ as claimed. ## PREDICTIVE DISTRIBUTION Based on the posterior distribution $$oldsymbol{ heta} \mid \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\sigma^{-2} \mathbf{A}^{-1} \mathbf{X}^{ op} \mathbf{y}, \mathbf{A}^{-1})$$ we can derive the predictive distribution for a new observations \mathbf{x}_* . The predictive distribution for the Bayesian linear model, i.e. the distribution of $\boldsymbol{\theta}^{\top}\mathbf{x}_*$, is $$y_* \mid \mathbf{X}, \mathbf{y}, \mathbf{x}_* \sim \mathcal{N}(\sigma^{-2} \mathbf{y}^{\top} \mathbf{X} \mathbf{A}^{-1} \mathbf{x}_*, \mathbf{x}_*^{\top} \mathbf{A}^{-1} \mathbf{x}_*)$$ Note that $y_* = \theta^T \mathbf{x}_* + \epsilon$, where both the posterior of θ and ϵ are Gaussians. By applying the rules for linear transformations of Gaussians, we can confirm that $y_* \mid \mathbf{X}, \mathbf{y}, \mathbf{x}_*$ is a Gaussian, too.