
PROOF OF THE POSTERIOR OF BAYSIAN LM
Proof:
We want to show that

for a Gaussian prior on θ ∼ N (0, τ 2Ip)

for a Gaussian Likelihood y | X,θ ∼ N (X⊤θ, σ2In)

the resulting posterior is Gaussian N (σ−2A−1X⊤y,A−1) with A := σ−2X⊤X + 1
τ2 Ip.

Plugging in Bayes’ rule and multiplying out yields

p(θ|X, y) ∝ p(y|X,θ)q(θ) ∝ exp

[
− 1

2σ2
(y − Xθ)⊤(y − Xθ)− 1

2τ 2
θ⊤θ

]
= exp

[
−1

2

(
σ−2y⊤y︸ ︷︷ ︸

doesn’t depend on θ

−2σ−2y⊤Xθ + σ−2θ⊤X⊤Xθ + τ−2θ⊤θ

)]

∝ exp

[
−1

2

(
σ−2θ⊤X⊤Xθ + τ−2θ⊤θ − 2σ−2y⊤Xθ

)]
= exp

[
−1

2
θ⊤

(
σ−2X⊤X + τ−2Ip

)
︸ ︷︷ ︸

:=A

θ + σ−2y⊤Xθ
]

This expression resembles a normal density - except for the term in red!
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Note: We need not worry about the normalizing constant since its mere role is to
convert probability functions to density functions with a total probability of one.
We subtract a (not yet defined) constant c while compensating for this change by
adding the respective terms (“adding 0”), emphasized in green:

p(θ|X, y) ∝ exp

[
−1

2
(θ−c)⊤A(θ−c)−c⊤Aθ +

1
2

c⊤Ac︸ ︷︷ ︸
doesn’t depend on θ

+σ−2y⊤Xθ
]

∝ exp

[
−1

2
(θ−c)⊤A(θ−c)−c⊤Aθ + σ−2y⊤Xθ

]
If we choose c such that −c⊤Aθ+ σ−2y⊤Xθ = 0, the posterior is normal with mean c
and covariance matrix A−1. Taking into account that A is symmetric, this is if we choose

σ−2y⊤X = c⊤A

⇔ σ−2y⊤XA−1 = c⊤

⇔ c = σ−2A−1X⊤y

as claimed.
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PREDICTIVE DISTRIBUTION

Based on the posterior distribution

θ | X, y ∼ N (σ−2A−1X⊤y,A−1)

we can derive the predictive distribution for a new observations x∗. The
predictive distribution for the Bayesian linear model, i.e. the distribution
of θ⊤x∗, is

y∗ | X, y, x∗ ∼ N (σ−2y⊤XA−1x∗, x⊤∗ A−1x∗)

Note that y∗ = θT x∗ + ϵ, where both the posterior of θ and ϵ are
Gaussians. By applying the rules for linear transformations of
Gaussians, we can confirm that y∗ | X, y, x∗ is a Gaussian, too.
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