FROM DISCRETE TO CONTINUOUS FUNCTIONS

We defined distributions on functions with finite domain by putting a finite Gaussian on it

$$
\mathbf{f} = [f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}), \ldots, f(\mathbf{x}^{(n)})] \sim \mathcal{N}(\mathbf{m}, \mathbf{K})
$$

• We can do this for $n \to \infty$ (as "granular" as we want)

 \times \times

FROM DISCRETE TO CONTINUOUS FUNCTIONS

- No matter how large *n* is, we are still considering a function over a discrete domain.
- How can we extend our definition to functions with **continuous domain** $X \subset \mathbb{R}$?
- Intuitively, a function *f* drawn from **Gaussian process** can be understood as an "infinite" long Gaussian random vector.
- It is unclear how to handle an "infinite" long Gaussian random vector!

GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function *k*(., .).

This property is called **marginalization property**.

 \mathbf{X}

GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function *k*(., .).

This property is called **marginalization property**.

< ×

GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function $k(.,.).$

This property is called **marginalization property**.

X

GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function $f(\mathbf{x})$ is generated by a GP \mathcal{GP} $(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ if for any **finite** set of inputs $\{ \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \}$, the associated vector of function values $\textbf{\textit{f}}=(\textit{f}(\textbf{x}^{(1)}), \ldots, \textit{f}(\textbf{x}^{(n)}))$ has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with

$$
\mathbf{m} \hspace{2mm} := \hspace{2mm} \left(m \left(\mathbf{x}^{(i)} \right) \right)_i, \hspace{2mm} \mathbf{K} := \left(k \left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right) \right)_{i,j},
$$

where $m(\mathbf{x})$ is called mean function and $k(\mathbf{x}, \mathbf{x}')$ is called covariance function.

GAUSSIAN PROCESSES / 2

A GP is thus **completely specified** by its mean and covariance function

$$
m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]
$$

$$
k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]) (f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}')])\right]
$$

$$
\begin{array}{c}\n0 & \times \\
\hline\n0 & \times \\
\hline\n0 & \times\n\end{array}
$$

Note: For now, we assume $m(x) \equiv 0$. This is not necessarily a drastic limitation - thus it is common to consider GPs with a zero mean function.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider *f*(**x**) ∼ \mathcal{GP} (0, $k(\mathbf{x}, \mathbf{x}')$) with the squared exponential covariance function $(*)$

$$
k(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}||\mathbf{x}-\mathbf{x}'||^2\right), \ \ \ell=1.
$$

This specifies the Gaussian process completely.

(∗) We will talk later about different choices of covariance functions.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR / 2

To visualize a sample function, we

- choose a high number *n* (equidistant) points $\{ \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \}$
- compute the corresponding covariance matrix $\mathbf{K} = \bigl(k\left(\mathbf{x}^{(i)},\mathbf{x}^{(j)}\right)\bigr)_{i,j}$ by plugging in all pairs $\mathbf{x}^{(i)},\mathbf{x}^{(j)}$
- sample from a Gaussian *f* ∼ N (**0**, *K*).

We draw 10 times from the Gaussian, to get 10 different samples.

 \times \times

SAMPLING FROM A GAUSSIAN PROCESS PRIOR / 3

Since we specified the mean function to be zero $m(\mathbf{x}) \equiv 0$, the drawn functions have zero mean.

X **XX**

X $X \times$

[Gaussian Processes as Indexed Family](#page-10-0)

GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a **stochastic process** which is defined as a collection of random variables indexed by some index set (also called an **indexed family**). What does it mean?

An **indexed family** is a mathematical function (or "rule") to map indices $t \in \mathcal{T}$ to objects in \mathcal{S} .

Definition

A family of elements in S indexed by T (indexed family) is a surjective function

$$
\begin{array}{rcl} \texttt{s}: \mathcal{T} & \rightarrow & \mathcal{S} \\ & t & \mapsto & \texttt{s}_t = \texttt{s}(t) \end{array}
$$

 $\overline{}$

INDEXED FAMILY

Some simple examples for indexed families are:

INDEXED FAMILY /2

But the indexed set S can be something more complicated, for example functions or **random variables** (RV):

- $\mathcal{T} = \{1, \ldots, m\}$, Y_t 's are RVs: Indexed family is a random vector.
- $\mathcal{T} = \{1, \ldots, m\}$, Y_t 's are RVs: Indexed family is a stochastic process in discrete time
- $T = \mathbb{Z}^2$, Y_t 's are RVs: Indexed family is a 2D-random walk.

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a one-dimensional X .

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a two-dimensional \mathcal{X} .