FROM DISCRETE TO CONTINUOUS FUNCTIONS

@ We defined distributions on functions with finite domain by putting
a finite Gaussian on it

= [f(xM), f(x®), ... F(x()] ~ N(m, K)

@ We can do this for n — oo (as “granular’ as we want)

n=10 n=>50 n =200
2 2 - 2
1 1 - - 1 H
| | . - .
Zo o . =1 Zo
= .t = =
L] -
| ]
1 -1 1
2 -2 2
X X X

Advanced Machine Learning — 1/13

X X



FROM DISCRETE TO CONTINUOUS FUNCTIONS

No matter how large nis, we are still considering a function over a
discrete domain.

How can we extend our definition to functions with continuous
domain X C R?

Intuitively, a function f drawn from Gaussian process can be
understood as an “infinite” long Gaussian random vector.

It is unclear how to handle an “infinite” long Gaussian random
vector!
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GAUSSIAN PROCESSES: INTUITION

@ Thus, it is required that for any finite set of inputs
{(x(M, ... x(M} ¢ &, the vector f has a Gaussian distribution

f— [f (x(1)> ,...,f(x("))} ~ N (m,K),

with m and K being calculated by a mean function m(.) /
covariance function k(.,.).
@ This property is called marginalization property.

Sample Function, n =5

X f(z)

! ~ N (u, X)

Advanced Machine Learning — 3/13

X X



GAUSSIAN PROCESSES: INTUITION

@ Thus, it is required that for any finite set of inputs
{(x(M, ... x(M} ¢ &, the vector f has a Gaussian distribution

f— [f (x(1)> ,...,f(x("))} ~ N (m,K),

with m and K being calculated by a mean function m(.) /
covariance function k(.,.).
@ This property is called marginalization property.

Sample Function, n = 10

i f(z)

g o . . NN(P"E)
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GAUSSIAN PROCESSES: INTUITION

@ Thus, it is required that for any finite set of inputs
{(x(M, ... x(M} ¢ &, the vector f has a Gaussian distribution

f— [f (x(1)> ,...,f(x("))} ~ N (m,K),

with m and K being calculated by a mean function m(.) /
covariance function k(.,.).
@ This property is called marginalization property.

Sample Function, n = 50

Advanced Machine Learning — 3/13

X X



GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function f(x) is generated by a GP GP (m(x), k (x,x")) if for any
finite set of inputs {x(V), ..., x("}, the associated vector of function
values f = (f(x("),..., f(x(")) has a Gaussian distribution

f— [f (x(‘>) ,...,f(x("))} ~ N (m, K),

with

w o (), e (),

.

where m(x) is called mean function and k(x, x’) is called covariance
function.
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GAUSSIAN PROCESSES /2

A GP is thus completely specified by its mean and covariance function

m(x) = E[f(x)]
k(x,X) = E|(f(x) - E[f(x)]) (f(x') — E[f(x)])

Note: For now, we assume m(x) = 0. This is not necessarily a drastic
limitation - thus it is common to consider GPs with a zero mean
function.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider
f(x) ~ GP (0, k(x,x’)) with the squared exponential covariance
function *)

’
k(x,x') = exp <—2€2Hx - x’||2> , 0=1.

This specifies the Gaussian process completely.

() We will talk later about different choices of covariance functions.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/2

To visualize a sample function, we
@ choose a high number n (equidistant) points {x(V), ... x("}
@ compute the corresponding covariance matrix
K= (k(x, x(/')))l.’/. by plugging in all pairs x(), x()
@ sample from a Gaussian f ~ N/(0, K).
We draw 10 times from the Gaussian, to get 10 different samples.

5.01
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/3

Since we specified the mean function to be zero m(x) = 0, the drawn
functions have zero mean.
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Gaussian Processes as Indexed Family
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GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a stochastic process which is
defined as a collection of random variables indexed by some index set
(also called an indexed family). What does it mean?

An indexed family is a mathematical function (or “rule”) to map indices
t € T to objects in S.

Definition

A family of elements in S indexed by T (indexed family) is a
surjective function

s: T — S
t — s =5(t)
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INDEXED FAMILY

Some simple examples for indexed families are:

T S
List
@ finite sequences (lists): — H
T={1,2,...,n} and : pr—
—— .
(st)er €R 123 n
T S
@ infinite sequences: =i
T=Nand (st),cr € R N
- .
Los
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INDEXED FAMILY /2

But the indexed set S can be something more complicated, for example
functions or random variables (RV):

T S

e T={1,...,m}, Yysare Random vector
Yl
RVs: Indexed family is a v,
random vector. o H
—— .

e T={1,...,m}, Yysare 128 e m

RVs: Ind.exed famlly is a T S

stochastic process in Stochastic process

. . in discrete time
discrete time v,
Y.

@ T =172, Yysare RVs:
Indexed family is a ,
2D-random walk.
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INDEXED FAMILY

@ A Gaussian process is also an indexed family, where the random
variables f(x) are indexed by the input values x € X'.

@ Their special feature: Any indexed (finite) random vector has a
multivariate Gaussian distribution (which comes with all the nice
properties of Gaussianity!).
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Visualization for a one-dimensional X'.
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INDEXED FAMILY

@ A Gaussian process is also an indexed family, where the random
variables f(x) are indexed by the input values x € X'.

@ Their special feature: Any indexed (finite) random vector has a
multivariate Gaussian distribution (which comes with all the nice

properties of Gaussianity!).

T2

Visualization for a two-dimensional X'.

Advanced Machine Learning — 13/13

X X



	Gaussian Processes as Indexed Family

