
FROM DISCRETE TO CONTINUOUS FUNCTIONS

We defined distributions on functions with finite domain by putting
a finite Gaussian on it

f = [f (x(1)), f (x(2)), . . . , f (x(n))] ∼ N (m,K )

We can do this for n → ∞ (as “granular” as we want)

−2

−1

0

1

2

x

f(
x)

n = 10

−2

−1

0

1

2

x

f(
x)

n = 50

−2

−1

0

1

2

x

f(
x)

n = 200

© Advanced Machine Learning – 1 / 13



FROM DISCRETE TO CONTINUOUS FUNCTIONS

No matter how large n is, we are still considering a function over a
discrete domain.

How can we extend our definition to functions with continuous
domain X ⊂ R?

Intuitively, a function f drawn from Gaussian process can be
understood as an “infinite” long Gaussian random vector.

It is unclear how to handle an “infinite” long Gaussian random
vector!

© Advanced Machine Learning – 2 / 13



GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for any finite set of inputs
{x(1), . . . , x(n)} ⊂ X , the vector f has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with m and K being calculated by a mean function m(.) /
covariance function k(., .).
This property is called marginalization property.

−2

−1

0

1

2

x

f(
x)

Sample Function, n = 5

© Advanced Machine Learning – 3 / 13



GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for any finite set of inputs
{x(1), . . . , x(n)} ⊂ X , the vector f has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with m and K being calculated by a mean function m(.) /
covariance function k(., .).
This property is called marginalization property.

−2

−1

0

1

2

x

f(
x)

Sample Function, n = 10

© Advanced Machine Learning – 3 / 13



GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for any finite set of inputs
{x(1), . . . , x(n)} ⊂ X , the vector f has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with m and K being calculated by a mean function m(.) /
covariance function k(., .).
This property is called marginalization property.

−2

−1

0

1

2

x

f(
x)

Sample Function, n = 50

© Advanced Machine Learning – 3 / 13



GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function f (x) is generated by a GP GP (m(x), k (x, x′)) if for any
finite set of inputs

{
x(1), . . . , x(n)

}
, the associated vector of function

values f =
(
f (x(1)), . . . , f (x(n))

)
has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with

m :=
(

m
(

x(i)
))

i
, K :=

(
k
(

x(i), x(j)
))

i,j
,

where m(x) is called mean function and k(x, x′) is called covariance
function.

© Advanced Machine Learning – 4 / 13



GAUSSIAN PROCESSES / 2

A GP is thus completely specified by its mean and covariance function

m(x) = E[f (x)]

k(x, x′) = E

[
(f (x)− E[f (x)])

(
f (x′)− E[f (x′)]

)]

Note: For now, we assume m(x) ≡ 0. This is not necessarily a drastic
limitation - thus it is common to consider GPs with a zero mean
function.

© Advanced Machine Learning – 5 / 13



SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider
f (x) ∼ GP (0, k(x, x′)) with the squared exponential covariance
function (∗)

k(x, x′) = exp

(
− 1

2ℓ2 ∥x − x′∥2
)
, ℓ = 1.

This specifies the Gaussian process completely.

(∗) We will talk later about different choices of covariance functions.

© Advanced Machine Learning – 6 / 13



SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/ 2

To visualize a sample function, we

choose a high number n (equidistant) points
{

x(1), . . . , x(n)
}

compute the corresponding covariance matrix
K =

(
k
(
x(i), x(j)

))
i,j by plugging in all pairs x(i), x(j)

sample from a Gaussian f ∼ N (0,K ).

We draw 10 times from the Gaussian, to get 10 different samples.

−5.0

−2.5

0.0

2.5

5.0

−2 −1 0 1 2
x

f(
x)

© Advanced Machine Learning – 7 / 13



SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/ 3

Since we specified the mean function to be zero m(x) ≡ 0, the drawn
functions have zero mean.

© Advanced Machine Learning – 8 / 13



Gaussian Processes as Indexed Family

© Advanced Machine Learning – 9 / 13



GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a stochastic process which is
defined as a collection of random variables indexed by some index set
(also called an indexed family). What does it mean?

An indexed family is a mathematical function (or “rule”) to map indices
t ∈ T to objects in S.

Definition

A family of elements in S indexed by T (indexed family) is a
surjective function

s : T → S
t 7→ st = s(t)

© Advanced Machine Learning – 10 / 13



INDEXED FAMILY

Some simple examples for indexed families are:

finite sequences (lists):
T = {1, 2, . . . , n} and
(st)t∈T ∈ R

infinite sequences:
T = N and (st)t∈T ∈ R

© Advanced Machine Learning – 11 / 13



INDEXED FAMILY / 2

But the indexed set S can be something more complicated, for example
functions or random variables (RV):

T = {1, . . . ,m}, Yt ’s are
RVs: Indexed family is a
random vector.

T = {1, . . . ,m}, Yt ’s are
RVs: Indexed family is a
stochastic process in
discrete time

T = Z2, Yt ’s are RVs:
Indexed family is a
2D-random walk.

© Advanced Machine Learning – 12 / 13



INDEXED FAMILY

A Gaussian process is also an indexed family, where the random
variables f (x) are indexed by the input values x ∈ X .

Their special feature: Any indexed (finite) random vector has a
multivariate Gaussian distribution (which comes with all the nice
properties of Gaussianity!).

Visualization for a one-dimensional X .

© Advanced Machine Learning – 13 / 13



INDEXED FAMILY

A Gaussian process is also an indexed family, where the random
variables f (x) are indexed by the input values x ∈ X .

Their special feature: Any indexed (finite) random vector has a
multivariate Gaussian distribution (which comes with all the nice
properties of Gaussianity!).

Visualization for a two-dimensional X .

© Advanced Machine Learning – 13 / 13


	Gaussian Processes as Indexed Family

