
DISCRETE FUNCTIONS

For simplicity, let us consider functions with finite domains first.

Let X =
{

x(1), . . . , x(n)
}

be a finite set of elements and H the set of all
functions from X → R.
Remark: X does not mean the training data here but means the “real”
domain of the functions.

Since the domain of any f (.) ∈ H has only n elements, we can
represent the function f (.) compactly as a n-dimensional vector

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
.
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DISCRETE FUNCTIONS

Some examples f : X → R where X is univariate and finite:
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DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on a discrete function
f ∈ H is to use the vector representation

f =
[
f
(

x(1)
)
, f
(

x(2)
)
, . . . , f

(
x(n)

)]
of the function.

Let us see f as a n-dimensional random variable. We will further
assume the following normal distribution:

f ∼ N (m,K ) .

Note: For now, we set m = 0 and take the covariance matrix K as
given. We will see later how they are chosen / estimated.
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DISCRETE FUNCTIONS

Let f : X → R. Sample functions by sampling from a two-dimensional
normal variable.

f = [f (1), f (2)] ∼ N (m,K )
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In this example, m = (0, 0) and K =

(
1 0.5

0.5 1

)
.
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DISCRETE FUNCTIONS

Let f : X → R. Sample functions by sampling from a five-dimensional
normal variable.

f = [f (1), f (2), f (3), f (4), f (5)] ∼ N (m,K )
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ROLE OF THE COVARIANCE FUNCTION

“Meaningful” functions (on a numeric space X ) may be
characterized by a spatial property:

If two points x(i), x(j) are close in X -space, their function
values f (x(i)), f (x(j)) should be close in Y-space.

In other words: If they are close in X -space, their functions values
should be correlated!

We can enforce that by choosing a covariance function with

K ij high, if x(i), x(j) close.

© Advanced Machine Learning – 6 / 9



ROLE OF THE COVARIANCE FUNCTION / 2

Covariance controls the “shape” of the drawn function. Consider cases
of varying correlation structure

a) uncorrelated: K = I .
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Sample Functions for a) K = I, n = 50

Points are uncorrelated. We sample white noise.
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ROLE OF THE COVARIANCE FUNCTION

b) Correlation almost 1: K =
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Sample Functions for b), n = 50

Points are highly correlated. Functions become very smooth and flat.
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ROLE OF THE COVARIANCE FUNCTION / 2

We can compute the entries of the covariance matrix by a function
that is based on the distance between x(i), x(j), for example:

c) Spatial correlation: Kij = k(x(i), x(j)) = exp

(
− 1

2

∣∣∣x(i) − x(j)
∣∣∣2
)
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Sample Functions for c), n = 50

Function exhibit interesting, variable shape.

NB: k(·, ·) is called covar. function or kernel, we will study it more later.
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