For simplicity, let us consider functions with finite domains first.

Let $\mathcal{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions from $\mathcal{X} \to \mathbb{R}$. **Remark**: \mathcal{X} does not mean the training data here but means the "real" domain of the functions.

Since the domain of any $f(.) \in \mathcal{H}$ has only *n* elements, we can represent the function f(.) compactly as a *n*-dimensional vector

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)} \right), \dots, f\left(\mathbf{x}^{(n)} \right) \right].$$

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

× < 0 × × ×

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

× > 0 × × ×

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f : \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on a discrete function $f \in \mathcal{H}$ is to use the vector representation

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)} \right), f\left(\mathbf{x}^{(2)} \right), \dots, f\left(\mathbf{x}^{(n)} \right) \right]$$

of the function.

Let us see f as a *n*-dimensional random variable. We will further assume the following normal distribution:

$$m{f} \sim \mathcal{N}(m{m},m{K})$$
 .

Note: For now, we set m = 0 and take the covariance matrix K as given. We will see later how they are chosen / estimated.

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

× × 0 × ×

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

× × 0 × × ×

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

× > 0 × × >

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

 $f = [f(1), f(2), f(3), f(4), f(5)] \sim \mathcal{N}(m, K)$

Let $f : \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

× ×

ROLE OF THE COVARIANCE FUNCTION

• "Meaningful" functions (on a numeric space \mathcal{X}) may be characterized by a spatial property:

If two points $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

In other words: If they are close in \mathcal{X} -space, their functions values should be **correlated**!

• We can enforce that by choosing a covariance function with

 \boldsymbol{K}_{ij} high, if $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ close.

ROLE OF THE COVARIANCE FUNCTION / 2

Covariance controls the "shape" of the drawn function. Consider cases of varying correlation structure

a) uncorrelated: K = I.

Points are uncorrelated. We sample white noise.

× < 0 × × ×

ROLE OF THE COVARIANCE FUNCTION

b) Correlation almost 1: $\mathbf{K} = \begin{pmatrix} 1 & 0.99 & \dots & 0.99 \\ 0.99 & 1 & \dots & 0.99 \\ 0.99 & 0.99 & \ddots & 0.99 \\ 0.99 & \dots & 0.99 & 1 \end{pmatrix}$.

Sample Functions for b), n = 50

× × 0 × × ×

Points are highly correlated. Functions become very smooth and flat.

ROLE OF THE COVARIANCE FUNCTION / 2

• We can compute the entries of the covariance matrix by a function that is based on the distance between $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$, for example:

c) Spatial correlation:
$$K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2} \left|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right|^2\right)$$

× × 0 × × ×

Function exhibit interesting, variable shape.

NB: $k(\cdot, \cdot)$ is called **covar. function** or **kernel**, we will study it more later.