For simplicity, let us consider functions with finite domains first.

Let $\mathcal{X}=\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions from $\mathcal{X} \to \mathbb{R}$.

Remark: \mathcal{X} does not mean the training data here but means the "real" domain of the functions.

Since the domain of any $f(.) \in \mathcal{H}$ has only *n* elements, we can represent the function *f*(.) compactly as a *n*-dimensional vector

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right].
$$

 $\overline{\mathbf{X}}$

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

X $\times\overline{\times}$

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

X **XX**

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

X $\times\overline{\times}$

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

X $\times\overline{\times}$

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

Some examples $f: \mathcal{X} \to \mathbb{R}$ where \mathcal{X} is univariate and finite:

DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on a discrete function $f \in \mathcal{H}$ is to use the vector representation

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), f\left(\mathbf{x}^{(2)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right]
$$

 \times \times

of the function.

Let us see *f* as a *n*-dimensional random variable. We will further assume the following normal distribution:

$$
f\sim\mathcal{N}\left(m,K\right) .
$$

Note: For now, we set $m = 0$ and take the covariance matrix **K** as given. We will see later how they are chosen / estimated.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a two-dimensional normal variable.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

X X

Let $f: \mathcal{X} \to \mathbb{R}$. Sample functions by sampling from a five-dimensional normal variable.

X X

ROLE OF THE COVARIANCE FUNCTION

• "Meaningful" functions (on a numeric space \mathcal{X}) may be characterized by a spatial property:

> If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})$ should be close in $\mathcal{Y}\text{-space}.$

In other words: If they are close in \mathcal{X} -space, their functions values should be **correlated**!

We can enforce that by choosing a covariance function with

 K_{ij} high, if $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ close.

ROLE OF THE COVARIANCE FUNCTION / 2

Covariance controls the "shape" of the drawn function. Consider cases of varying correlation structure

a) uncorrelated: $K = I$.

Points are uncorrelated. We sample white noise.

ROLE OF THE COVARIANCE FUNCTION

b) Correlation almost 1: $K =$ $\sqrt{ }$ $\overline{}$ 1 0.99 . . . 0.99 0.99 1 . . . 0.99 0.99 0.99 . . . 0.99 0.99 . . . 0.99 1 \setminus $\Big\}$.

> −2 −1 0 1 2 x Sample Functions for b), $n = 50$

 \overline{x}

Points are highly correlated. Functions become very smooth and flat.

ROLE OF THE COVARIANCE FUNCTION / 2

We can compute the entries of the covariance matrix by a function that is based on the distance between $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$, for example:

c) Spatial correlation:
$$
K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2}|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}|^2\right)
$$

 \times \times

Function exhibit interesting, variable shape.

NB: $k(\cdot, \cdot)$ is called **covar. function** or **kernel**, we will study it more later.