DISCRETE FUNCTIONS

For simplicity, let us consider functions with finite domains first. X
Let X = {x(), ... x("} be a finite set of elements and H the set of all X

functions from X — R.

Remark: X does not mean the training data here but means the “real” x x

domain of the functions.

Since the domain of any f(.) € H has only n elements, we can
represent the function f(.) compactly as a n-dimensional vector

f— [f (x<‘)) ,...,f(x(”))].
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DISCRETE FUNCTIONS

Some examples f : X — R where X is univariate and finite:
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DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on a discrete function
f € H is to use the vector representation

f= [f (x(1)) ,f(x<2)) ,...,f(x(”)ﬂ

of the function.

Let us see f as a n-dimensional random variable. We will further
assume the following normal distribution:

f~N(mK).

Note: For now, we set m = 0 and take the covariance matrix K as
given. We will see later how they are chosen / estimated.
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DISCRETE FUNCTIONS

Let f : X — R. Sample functions by sampling from a two-dimensional
normal variable.

f=1[f(1),f(2)] ~ N(m,K)

Sample Function 1, n =2 Density of a 2-D Gaussian
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In this example, m = (0,0) and K = (015 01'5>.

Advanced Machine Learning — 4/9



DISCRETE FUNCTIONS

Let f : X — R. Sample functions by sampling from a two-dimensional
normal variable.

f=1[f(1),f(2)] ~ N(m,K)

Sample Function 2, n =2 Density of a 2-D Gaussian
3 3
2 2
1 1
g &
=
0 0
-1 -1
[ ]
oy -2
0 1 -2 -1 0 1 2 3
X hy

In this example, m = (0,0) and K = (015 01'5>.

Advanced Machine Learning — 4/9



DISCRETE FUNCTIONS

Let f : X — R. Sample functions by sampling from a two-dimensional
normal variable.

f=1[f(1),f(2)] ~ N(m,K)

Sample Function 3, n =2 Density of a 2-D Gaussian
3 3
2 2
1 1
g &
=
0 0
-1 n -1
oy -2
0 1 -2 -1 0 1 2 3
X hy

In this example, m = (0,0) and K = (015 01'5>.

Advanced Machine Learning — 4/9



DISCRETE FUNCTIONS

Let f : X — R. Sample functions by sampling from a five-dimensional
normal variable.

f=1[f(1),f(2),f(3), f(4), f(5)] ~ N(m,K)

Sample Function1,n=5 Covariance Matrix
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ROLE OF THE COVARIANCE FUNCTION

@ “Meaningful” functions (on a numeric space X’) may be
characterized by a spatial property:

If two points x(), x\) are close in X-space, their function
values f(x(0), f(x)) should be close in )-space.

In other words: If they are close in X’-space, their functions values
should be correlated!

@ We can enforce that by choosing a covariance function with

K high, if x('), x¥) close.
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ROLE OF THE COVARIANCE FUNCTION /2

Covariance controls the “shape” of the drawn function. Consider cases
of varying correlation structure

a) uncorrelated: K = 1.

Sample Functions for a) K =1, n = 50

Points are uncorrelated. We sample white noise.
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ROLE OF THE COVARIANCE FUNCTION
1099 ... 099 x

. 099 1 ... 0.99
b) Correlation almost 1: K = . .
099 099 . 0.99 X
099 ... 099 1

Sample Functions for b), n = 50

Points are highly correlated. Functions become very smooth and flat.
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ROLE OF THE COVARIANCE FUNCTION /2

@ We can compute the entries of the covariance matrix by a function
that is based on the distance between x(), x() for example:

ORI ’2)

c) Spatial correlation: K; = k(x, x?) = exp (—;

Sample Functions for ¢), n = 50

Function exhibit interesting, variable shape.
NB: k(-, -) is called covar. function or kernel, we will study it more later.
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