WEIGHT-SPACE VIEW

- Until now we considered a hypothesis space *H* of parameterized functions *f*(**x** | *θ*) (in particular, the space of linear functions).
- Using Bayesian inference, we derived distributions for θ after having observed data D.
- Prior believes about the parameter are expressed via a prior distribution q(θ), which is updated according to Bayes' rule

× 0 0 × 0 × ×

WEIGHT-SPACE VS. FUNCTION-SPACE VIEW

Weight-Space View

Function-Space View

Parameterize functions \overline{P}

Example: $f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}$

Define distributions on θ Define distributions on f

Inference in parameter space Θ ~ Inference in function space ${\cal H}$

- Directly search in a space of "allowed" functions $\mathcal{H}.$
- Specify a prior distribution over functions instead over a parameter and update it according to the observed data points.

Intuitively, imagine we could draw a huge number of functions from some prior distribution over functions $^{(*)}$.

Functions drawn from a Gaussian process prior

^(*) We will see in a minute how distributions over functions can be specified.

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 1 observation

× 0 0 × × ×

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 2 observations

× 0 0 × 0 × ×

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 3 observations

As we observe more and more data points, the variety of functions consistent with the data shrinks.

Posterior process after 4 observations

× 0 0 × 0 × × ×

Intuitively, there is something like "mean" and a "variance" of a distribution over functions.

Posterior process after 4 observations

2 (x) 0 -2 --2 $^{-1}$ х × 0 0 × 0 × ×