CALIBRATION

@ Consider binary classification with a probabilistic score classifier
f(X) =2- ]]'[S(X)ZC] — 1,

leading to the prediction random variable y = f(x). Let S = s(x) be the
score random variable.

@ fis calibrated iff P(y =1|S =s) = sforall s € [0,1].

@ Different post-processing methods have been proposed for the purpose
of calibration, i.e., to construct a calibration function

C:S—|[o0,1],

such that C(s(x)) is well-calibrated. Here, S is the possible score set of
the classifier (the image of s).

@ For learning C, a set of calibration data is used:
Deas = {(3(1)’},(1))7 B .,(s(N),y(N))} cSx{-1,1}

@ This data should be different from the training data used to learn the
scoring classifier. Otherwise, there is a risk of introducing a bias.
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EMPIRICAL BINNING AND PLATT SCALING

@ Binning offers a first obvious approach: Partition S into bins
(intervals) By, . .., By, and define C(s) = py(s), where J(s)
denotes the index of the bin of s (i.e., s € By()), and

N1
_ et Ly, yin=41]
Pm = N

Zn:1 ]l[s(”)eBm]

is the average proportion of positives in bin Bp,.

@ Another method is Platt scaling, which essentially applies logistic
regression to predicted scores s € R, i.e., it fits a calibration
function C such that

1
1+exp(y+0-s)’

C(s) =

minimizing log-loss on Dgg.
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ISOTONIC REGRESSION

@ The sigmoidal transformation fit by Platt scaling is appropriate for
some methods (e.g., support vector machines) but not for others.

@ [sotfonic regression combines the nonparametric character of
binning with Platt scaling’s guarantee of monotonicity.

@ Isotonic regression minimizes

ZW” (n))

subject to the constraint that C is isotonic: C(s) < C(t) for s < t.

@ Note that C is evaluated only at a finite number of points;
in-between, one may (linearly) interpolate or assume a piecewise
constant function.
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

@ Let the scores observed for calibration be sorted (and without

ties), such that
s <@« < sV,

We then seek values ¢; < ¢ < ... < ¢y which minimize

N
> wi(cn =y

n=1

@ Initialize one block B, for each observation (s(”, y("); the value of
the block is ¢(B,) = y(" and the width is w(B,) = 1.

@ A merge operation combines two blocks B’ and B” into a new
block B with width w(B) = w(B') + w(B") and value

_ w(B')¢e(B') + w(B")c(B")
N w(B') + w(B")
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

@ PAVA iterates the following steps (the description is somewhat
simplified to avoid notational overload):

(1) Find the first violating pair, namely, adjacent blocks B; and
B;i11 such that ¢; > ¢ 1; if there is no such pair, then stop.

(2) Merge B; and B; 1 into a new block B.

(3) If ¢(B) < c(Bj_1) for the left neighbor block B;_1, merge also
these blocks and continue doing so until no more violations
are encountered.

(4) Continue with (1).
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

@ Note that, in the case of binary classification, the target values y(”) x
are allin {0,1}:

Advanced Machine Learning — 7/8



MULTI-CLASS CALIBRATION

@ Calibration methods also exist for the multi-class case (i.e.,
classification problems with more than two classes).

@ Then, however, the problem becomes conceptually more difficult
(and is still a topic of ongoing research).

@ While essentially coinciding for binary classification, the following
definitions of calibration (leading to increasingly difficult problems)
can be distinguished for more than two classes:

e Calibration of the highest predicted probability (confidence
calibration)

e Calibration of the marginal probabilities (class-wise
calibration)

e Calibration of the entire vector of predicted probabilities
(multi-class calibration)
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