
CALIBRATION

Consider binary classification with a probabilistic score classifier

f (x) = 2 · 1[s(x)≥c] − 1,

leading to the prediction random variable ŷ = f (x). Let S = s(x) be the
score random variable.

f is calibrated iff P(y = 1 | S = s) = s for all s ∈ [0, 1].

Different post-processing methods have been proposed for the purpose
of calibration, i.e., to construct a calibration function

C : S → [0, 1],

such that C(s(x)) is well-calibrated. Here, S is the possible score set of
the classifier (the image of s).

For learning C, a set of calibration data is used:

Dcal =
{
(s(1), y (1)), . . . , (s(N), y (N))

}
⊂ S× {−1, 1}

This data should be different from the training data used to learn the
scoring classifier. Otherwise, there is a risk of introducing a bias.
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EMPIRICAL BINNING AND PLATT SCALING

Binning offers a first obvious approach: Partition S into bins
(intervals) B1, . . . ,BM , and define C(s) = p̄J(s), where J(s)
denotes the index of the bin of s (i.e., s ∈ BJ(s)), and

p̄m =

∑N
n=1 1[s(n)∈Bm, y(n)=+1]∑N

n=1 1[s(n)∈Bm]

is the average proportion of positives in bin Bm.

Another method is Platt scaling, which essentially applies logistic
regression to predicted scores s ∈ R, i.e., it fits a calibration
function C such that

C(s) =
1

1 + exp(γ + θ · s)
,

minimizing log-loss on Dcal .
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ISOTONIC REGRESSION

The sigmoidal transformation fit by Platt scaling is appropriate for
some methods (e.g., support vector machines) but not for others.

Isotonic regression combines the nonparametric character of
binning with Platt scaling’s guarantee of monotonicity.

Isotonic regression minimizes

N∑
n=1

wn (C(s(n))− y (n))2

subject to the constraint that C is isotonic: C(s) ≤ C(t) for s < t .

Note that C is evaluated only at a finite number of points;
in-between, one may (linearly) interpolate or assume a piecewise
constant function.
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

Let the scores observed for calibration be sorted (and without
ties), such that

s(1) < s(2) < . . . < s(N) .

We then seek values c1 ≤ c2 ≤ . . . ≤ cN which minimize

N∑
n=1

wn(cn − y (n))2 .

Initialize one block Bn for each observation (s(n), y (n)); the value of
the block is c(Bn) = y (n) and the width is w(Bn) = 1.

A merge operation combines two blocks B′ and B′′ into a new
block B with width w(B) = w(B′) + w(B′′) and value

c =
w(B′)c(B′) + w(B′′)c(B′′)

w(B′) + w(B′′)
.
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

PAVA iterates the following steps (the description is somewhat
simplified to avoid notational overload):

(1) Find the first violating pair, namely, adjacent blocks Bi and
Bi+1 such that ci > ci+1; if there is no such pair, then stop.

(2) Merge Bi and Bi+1 into a new block B.
(3) If c(B) < c(Bi−1) for the left neighbor block Bi−1, merge also

these blocks and continue doing so until no more violations
are encountered.

(4) Continue with (1).
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)
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PAIR-ADJACENT VIOLATORS ALGORITHM (PAVA)

Note that, in the case of binary classification, the target values y (n)

are all in {0, 1}:
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MULTI-CLASS CALIBRATION

Calibration methods also exist for the multi-class case (i.e.,
classification problems with more than two classes).

Then, however, the problem becomes conceptually more difficult
(and is still a topic of ongoing research).

While essentially coinciding for binary classification, the following
definitions of calibration (leading to increasingly difficult problems)
can be distinguished for more than two classes:

Calibration of the highest predicted probability (confidence
calibration)
Calibration of the marginal probabilities (class-wise
calibration)
Calibration of the entire vector of predicted probabilities
(multi-class calibration)
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