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[Daxberger et al. 202(

® More complicated also possible, e.g., variational autoencoders [Daxberger et al.
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OUT-OF-DISTRIBUTION DETECTION:: OO D-CLASSIFIER
OOD-CLASSIFIER

@ Problem: we have only in-distribution data

eoPrablem: we haveonlyin-distributienidatan) data by randomly sample data points

] o Idea:Hallucinate new-(out-of-distribution) data by randomly sample datapoints
ll -~ Learn abinary classifier to distinguish between the origins of the data
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I o Idea:Hallucinate new{out-of-distribution) datablrrandomlwsampledatapomts
l ~= Learn abinary classifier to distinguish between the origins of the data

RSP otk et ), 2neh SIS

I 9 Study whether-an explanationcapproach canbe foole
| o Hide bias'in'the true {déblélfed) model, but use an unbiased model for all
| mpout-of-distribution samples, - tion approach

ll - Important way to diagnose an explanatlon approach
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OUT-OF-DISTRIBUTION DETECTION: CLUSTERING: VA DESCAN
VIA QPSQAN data clustering algorithm

° DBSCANis'a data clastering algorithm ESBIBIISEEMEED o <¢)
(Density-Based Spatial Clustering of Applications with Noise)
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‘\'( )—{x[‘] Xd(x x[]) €}
) IS a distance measure (e Euclidean or ;’A,‘,‘f,! distance)

Od( )ns adistanceome asure (e.g., Euclidean or Gower distance)
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e Forms an own cluster with all its neighborhood points
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QUT-OF-NISTRIRLITION DETECTION!

o  Green pojnts A.and B are core poinls. ..
&Y and form ong duster since they lie.in,. .
Vgt A each others neighborhood. all yellow . .
ol oie ) neldbor a1l ¥&1oW points a

o e ol ) points are border points of this

; Wil e cluster
£~ 08

Example for DBSCAN, circles dsplay « naighbohioods, m = 4
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@ In-distribution: new point lies within a
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e Disadvantages @ Out-of-distribution: new point lies
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@ Disadvamages:nality
e sDepending-onthe distance metric-d(- ) DPBSCAN could suffer from the
“curse of dimensionality”
e The choice of € and m is not clear a-priori

cluste
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o, Differentiale, between different kinds ot uncertainty; .
@) Explanation uncertainty;, Change of explanation it we repeal g . 1 1ococe o (19
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*oDiffprantiala:batwrpo gL pdmatuncataintinty
@) Explanation uncertainty;, Change of explanation it we repeal g . 1 1ococe o (19
Process, £:9, the explanation could differ depending.on which subsetol i o . pianation
data we use for the explanation. method and which hyperparameters
%Pmmmm Qhanga of exnlamtﬂonﬂlhe underwiagmod% el is changed

changed1l models non-robust, e.g.. because they are trained on noisy data
~+ are ML models non- robust e g. because they are trained on nmsy
data?
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PLacess, £:9n "’%?Xplﬁnétmcwqd““%f ‘9%"4&',1.9;9“ W’!‘.‘Eh;&ﬂ%?&gf"n the explanation
data weuse for the explanation.methed and which hyperparameters

@ Process uncertainty; Qhaf‘gﬁ of exalamtmﬂlhe underlying, WOd%’s 0| is
changed | models non-robust. e cause they are trained on noisy data

o e i are N ML quels non- robust g because they are trained on nmsy
data’? '
vith the same model and same

° We focus i?n exPIanatlon uncertalnty

changed

or similar) data points, we can

° Even with the same model and same (or similar) data points, we can
receive different explanations
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o Objective’ Similar explanations for similar inputs finra neighbomooed)” o
o “For LIME and SHAP: hotien of stability based on lecally Lipsehitz continuity 'Y
b Alvarez ¥l and daakiyia 2018
Aftesplandtion meéthod g -t < R™lis deally Eipsehitzf = /1
o *fofevery XJe X thereexist 5~ o andiie R
o *stith thatlx X x, o< §impligs Fa(xy > g(xo)|Few|ix = x| *
Note' that! for L IME g feturns the ‘m coefficients'of the surrogate model
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1
i
]
]

~+ The closer w is to 0, the more robust our explanation method is
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b Alvarez ¥l and daakiyia 2018
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o *fofevery XJe X thereexist 5~ o andiie R

o *stith thatlx X x, o< §impligs Fa(xy > g(xo)|Few|ix = x| *
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0°Aéoordm§ to thlé ‘we'candquantify the' roblistness o?explahaﬁ&n MOdels i 'S 10 terms of

terms ofhie closer w is to 0, the more robust our explanation method is
o ~~icThe<loserw istafothe more robust-our explanation'method is
® w israrely known a-priori but it could be estimated as fg(llows

1600 = g(x M) x. x
dix,x(0) °

wx(x) € arg max
where N, (x) is the e-neigh f, T\Lx] X
where A\, (x) is the e-neighborhood of x
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