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Forinherently interpretable medels some additional
model-agnostic interpretation methods not required
~+ Eliminates a source of error

Interpretable models often simple
~= training time is fairly small

Some interpretable models estimate monotonic effects
=~ 8imple to explain as larger feature values always lead
to highet(orsmaller) cutcomes: (eg. GLMS)

Many people are familiar with simple interpretable models “
halncreases trustafacilitates communication ofresults
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DISADVANTAGES

o Often require assumptions about data / model structure = g
s+ Ibassumptions are wrong, models may perform bad — 5
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DISADVANTAGES

o Often require assumptions about data / model structure T- -
sif (I-assumptions are wrong, models may perform bad = >

@ Interpretable models may also be hard to interpret, e.g.:

@ Linearmodefl withlots of features andinteractions
@ Decision trees with huge tree depth

e.g., high-order main or interaction effects need to be specified manually ina LM

@ Inherently.interpretable models do not provide all types. of explanations
~- Methods providing other types of explanations still useful (e.g.. counterfactual

I @ Often do not automatically model complex relationships due to limited flexibility
I explanations)

l

l

l
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FURTHER COMMENTS

@ Some argue that interpretable models:should be preterred SEIL RGP
e .. .instead of explaining uninterpretable models post-hoc
¢ Canisometimes wark-out by spending lenoughtime:andenergy on data
presprocessing ormanualfeature @ngineering
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FURTHER COMMENTS

@ Some argue that interpretable moedels:should be preferred ST RGMP: | [
e .. .instead of explaining uninterpretable models post-hoc
° Can sometimes wark-out by spending lenough time-and energy on data
o presprocessingormanualfeatureengineering 1 ind energy ita
~+ Drawbaék: Hardto achieve for data for which end-to-end learning is crucial
e.guhard to extract.good features fonimage!/ text data irning rucia
re informatioreloss: =thad! perfarmance mag ita
o Ofteh‘there'is'a'trade off bétween intetpretability and model performance
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