SOFT-THRESHOLDING AND L1 REGULARIZATION

In the lecture, we wanted to solve
- > . -3 1 - -~
mng,eg(e) = min Remp(0) + [EH,_,(e, - a,-)z] + 3 Al
i f
with H; ; > 0, A > 0. Note that we can separate the dimensions, i.e.,
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Rieg(8) = Y 7(6)) with z(6;) = 2 H(8) = 6))° + AI6)].
J
Hence, we can minimize each z; separately to find the global minimum.

If H;; = 0, then z; is clearly minimized by (513550_,- = 0. Otherwise, z; is
strictly convex since %H,-_j((i,- — 6;)? is strictly convex and the sum of a
strictly convex function and a convex function is strictly convex.
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For strictly convex functions, there exists only one unique minimum and
for convex functions a stationary point (if it exists) is a minimum.
We now separately investigate z; for 6, > O0-and ¢/, <0.
NB: on these halflines z; is differentiable (with possible stationary point)
since
~0:L1gl = Lg —
@ fort >0: &, 6| = ao,”: =1,

° bf(}j(O:md?|9j|=md7(—9j)= -1.
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This minimum is only valid if
/ flasso; > 0 and so it must hold that
0 4 ~ A
1 ¢ b > —.
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This minimum is only valid if
thassoj < 0 and so it must hold that
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= If ; € [~ -, 7] then z has no
" g bR
stationary point wit
w“ (;lasso.j < 0or (;lasso.;‘ > 0.
g e

However, a unique minimum must
exist since z; is strictly convex for
H;; > 0. This means the only pos-
sible minimizer of z; is (513550,,- = 0.
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