RIDGE REGRESSION / L2 PENALTY

Intuitive measure of model complexity is deviation from 0-origin; coeffs
then have no or a weak effect. So we measure J(8) through a vector
norm, shrinking coeffs closer to 0.

Oidge = argamin z”: (y(’) - OTx(i))z - /\zp: (9!2
=1 j=1
= arg min [ly — X6z + A||6]2
Can still analytically solve this:
Orage = (XTX + A1) 'XTy

Name: We add pos. entries along the diagonal "ridge" of X X
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m RIDGE REGRESSION /L2 PENALTY /2

Let y = 3x; — 2x2 + €, € ~ N(0,1). The true minimizer is
67 = (3. -2)7, with fgge = argming |ly — X8)|2 + \|9]2

EMect of L2 Reguiarization on Linear Model Solutions

With increasing regularization, (3,,dge is pulled back to the origin
(contour lines show unregularized objective).
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Contours of regularized objective for different A values.
Betge = arg ming ||y — X8)|2 + 0|2

L2 Reguarnzaton: A= 0 L2 Regularzation: A = 10

L2 Regdarizasion: A = 100 L2 Regularzation: A = S00

8y

Green = true coefs of the DGP and red = ridge solution.
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We understand the geometry of these 2 mixed components in our
regularized risk objective much better, if we formulate the optimization
as a constrained problem (see this as Lagrange multipliers in reverse).

w3 (01 (010))

i=1

st. |02 <t
: Yol 75)
LY |, i (C

NB: There is a bijective relationship between A and t: A T = t | and vice versa.
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Inside constraints perspective: From
origin, jump from contour line to
contour line (better) until you become
infeasible, stop before.

We still optimize the Remp(8), but
cannot leave a ball around the origin.

Remp(8) grows monotonically if we
move away from @ (elliptic contours).

Solution path moves from origin to
border of feasible region with minimal
L, distance.
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O0OX

. | S, @ Outside constraints perspective:

_ , ' | From @, jump from contour line to x x
' ; 3 ‘ ‘ contour line (worse) until you become

' 1 ' o feasible, stop then.

@ So our new optimum will lie onthe
I I N N NN boundary of that ball.

@ Solution path moves from
unregularized estimate to feasible
region of regularized objective with
minimal L, distance.

]
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L2 regularization solution path x O

T \ @ Here we can see entire solution path
MY AL ‘; for ridge regression x x
(~ ), N ‘1 @ Cyan contours indicate feasile
% regions induced by different As
@ Red contour lines indicate different
levels of the unreg. objective

@ Ridge solution (red points) gets
pulled toward origin for increasing A

]
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION /2

With an L2 penalty we can now select d "too large" but regularize our
model by shrinking its coefficients. Otherwise we have to optimize over

O
the discrete d. X O
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f(x)

A | 8 @y @y @y A s Gy & Gy @y @19
) 1200 1600 48 2300 S40 430 420 043 63 013 Qo
10.00 520 130 3m 069 190 200 047 020 014 003 Q00
100.00 170 045 180 azs 180 0% 03 .0 006 002 000

Irroduction %o Machine Lexrning ~ 10/10



