Intuitive measure of model complexity is deviation from 0-origin; coeffs then have no or a weak effect. So we measure $J(\theta)$ through a vector norm, shrinking coeffs closer to 0.

$$\begin{split} \hat{\theta}_{\text{ridge}} &= & \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\mathbf{y}^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2 + \lambda \sum_{j=1}^{p} \theta_j^2 \\ &= & \arg\min_{\boldsymbol{\theta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_2^2 + \lambda \| \boldsymbol{\theta} \|_2^2 \\ \end{split}$$

Can still analytically solve this:

$$\hat{\theta}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Name: We add pos. entries along the diagonal "ridge" of $\mathbf{X}^T\mathbf{X}$

Let $y = 3x_1 - 2x_2 + \epsilon$, $\epsilon \sim N(0,1)$. The true minimizer is $\theta^* = (3,-2)^T$, with $\hat{\theta}_{\text{ridge}} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2$.

Effect of L2 Regularization on Linear Model Solutions

With increasing regularization, $\hat{\theta}_{ridge}$ is pulled back to the origin (contour lines show unregularized objective).

Contours of regularized objective for different λ values.

$$\hat{\theta}_{\text{ridge}} = \arg\min_{\boldsymbol{\theta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|^2.$$

Green = true coefs of the DGP and red = ridge solution.

We understand the geometry of these 2 mixed components in our regularized risk objective much better, if we formulate the optimization as a constrained problem (see this as Lagrange multipliers in reverse).

$$\min_{\boldsymbol{\theta}} \qquad \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2}$$

s.t.
$$\|\theta\|_{2}^{2} \leq t$$

NB: There is a bijective relationship between λ and t: $\lambda \uparrow \Rightarrow t \downarrow$ and vice versa.

- We still optimize the R_{emp}(θ), but cannot leave a ball around the origin.
- R_{emp}(θ) grows monotonically if we move away from θ̂ (elliptic contours).
- Solution path moves from origin to border of feasible region with minimal L₂ distance.

- So our new optimum will lie on the boundary of that ball.
- Solution path moves from unregularized estimate to feasible region of regularized objective with minimal L₂ distance.

- Cyan contours indicate feasible regions induced by different λs
- Red contour lines indicate different levels of the unreg. objective
- Ridge solution (red points) gets pulled toward origin for increasing λ

EXAMPLE: POLYNOMIAL RIDGE REGRESSION /2

With an L2 penalty we can now select d "too large" but regularize our model by shrinking its coefficients. Otherwise we have to optimize over the discrete d.

		θ_1							θ_8		
0.00											
10.00		1.30		0.69							
100.00	1.70	0.46	1.80	0.25	1.80	-0.94	0.34	-0.01	-0.06	0.02	-0.00

