LASSO VS. RIDGE GEOMETRY

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \qquad \text{s.t. } \|\boldsymbol{\theta}\|_{\mathcal{P}}^{p} \leq t$$

- In both cases (and for sufficiently large λ), the solution which minimizes
 R_{req}(θ) is always a point on the boundary of the feasible region.
- As expected, $\hat{\theta}_{lasso}$ and $\hat{\theta}_{ridge}$ have smaller parameter norms than $\hat{\theta}$.
- For lasso, solution likely touches a vertex of constraint region.
 Induces sparsity and is a form of variable selection.
- For p > n: lasso selects at most n features
 Zou and Hastle 2005

COEFFICIENT PATHS AND 0-SHRINKAGE /2

Example 2: High-dim., corr. simulated data: p = 50; n = 100

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

36/50 vars are noise; $\epsilon \sim \mathcal{N}(0, 1)$; $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$; $\Sigma_{k,l} = 0.7^{|k-l|}$

REGULARIZATION AND FEATURE SCALING /2

- Let the DGP be $y = \sum_{j=1}^5 \theta_j x_j + \varepsilon$ for $\theta = (1, 2, 3, 4, 5)^\top$, $\varepsilon \sim \mathcal{N}(0, 1)$
- Suppose x₅ was measured in m but we change the unit to cm (x̃₅ = 100 ⋅ x₅):

Method	$\hat{\theta}_1$	$\hat{\theta}_2$	$\hat{\theta}_3$	$\hat{\theta}_4$	$\hat{\theta}_5$	MSE
OLS	0.984	2.147	3.006	3.918	5.205	0.812
OLS Rescaled	0.984	2.147	3.006	3.918	0.052	0.812

- This is because θ

 ⁶5 now lives on small scale while L2 constraint stays the same.
 Hence remaining estimates can "afford" larger magnitudes.

Method	$\hat{\theta}_1$	$\hat{\theta}_2$	$\hat{\theta}_3$	$\hat{\theta}_4$	$\hat{\theta}_5$	MSE
Ridge	0.709	1.874	2.661	3.558	4.636	1.366
Ridge Rescaled	0.802	1.943	2.675	3.569	0.051	1.08

 For lasso, especially for very correlated features, we could arbitrarily force a feature out of the model through a unit change.

CORRELATED FEATURES: L1 VS L2/2

More detailed answer: The "random" decision is in fact a complex deterministic interaction of data geometry (e.g., corr. structures), the optimization method, and its hyperparamters (e.g., initialization). The theoretical reason for this behavior relates to the convexity of the penalties • Zou and Hastle 2005.

Considering perfectly collinear features $x_4 = x_5$ in the last example, we can obtain some more formal intuition for this phenomenon:

Because L2 penalty is strictly convex:

$$x_4 = x_5 \implies \hat{\theta}_{4,ridge} = \hat{\theta}_{5,ridge}$$
 (grouping prop.)

L1 penalty is not strictly convex. Hence, no unique solution exists if x₄ = x₅, and sum of coefficients can be arbitrarily allocated to both features while remaining minimizers (no grouping property!):
 For any solution θ̂_{4,lasso}, θ̂_{5,lasso}, equivalent minimizers are given by

by
$$\tilde{\theta}_{4,lasso} = s \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso})$$
 and $\tilde{\theta}_{5,lasso} = (1-s) \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso}) \ \forall s \in [0,1]$ $\theta_{4,lasso} = s \cdot (\theta_{4,lasso} + \theta_{5,lasso})$ and $\theta_{5,lasso} = (1-s) \cdot (\theta_{4,lasso} + \theta_{5,lasso}) \ \forall s \in [0,1]$

