LASSO VS. RIDGE GEOMETRY
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@ In both cases (and for sufficiently large A), the solution which minimizes
Reg(@) is always a point on the boundary of the feasible region.

@ As expected, émg, and ém,_,e have smaller parameter norms than 0.

@ For lasso. solution likely touches a vertex of constraint region.
Induces sparsity and is a form of variable selection.

@ For p > n: lasso selects at most n features [ > Zou and Haste 2005 }
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COEFFICIENT PATHS AND 0-SHRINKAGE /2
Example 2: High-dim., corr. simulated data: p = 50; n = 100

14
y=10-(x1+X2)+5-(X3+X4)+1-ZX,‘+6
j=5

36/50 vars are noise; ¢ ~ N (0,1);x ~ N (0, X); iy = 0.7/
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m REGULARIZATION AND FEATURE SCALING /2

® Letthe DGPbe y = Y, 6% + cfor =(1.2.3.4.5)", = ~ A(0.1)

Suppose xs was measured in m but we change the unit to cm (%s = 100 - xs):

Method 0, 0, 0y y s MSE
oLs 0.984 2147 3.006 3918 5.205 0812
OLS Rescaled | 0.984 2147 3006 3.918 0.052 0812

Estimate fs gets scaled by 1/100 while other estimates and MSE are invariant

Running ridge regression with A = 10 on same data shows that rescaling of of xs
does not result in inverse rescaling of fs (everything changes!)

This is because (55 now lives on small scale while L2 constraint stays the same.
Hence remaining estimates can "afford™ larger magnitudes.

Method 0, 0, 0y y s MSE
Ridge 0709 1874 2661 3558 4.636 1.366
Ridge Rescaled | 0.802 1.943 2675 3569 0.051 1.08

For lasso, especially for very correlated features, we could arbitrarily force a
feature out of the model through a unit change.
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CORRELATED FEATURES: L1 VS [2/2

More detailed answer: The “random" decision is in fact a complex
deterministic interaction of data geometry (e.g., corr. structures), the
optimization method, and its hyperparamters (e.g., initialization). The
theoretical reason for this behavior relates to the convexity of the

penalties CEITIIIEIET.

Considering perfectly collinear features x4 = x5 in the last example, we
can obtain some more formal intuition for this phenomenon:

® Because L2 peﬂnalty is st[ictly convex:

X4 = X5 == Usdage = O 1ege (Grouping prop:)

@ [1 penalty is not strictly convex. Hence, no unigue solution exists
if x4 = x5, and sum of coefficients can be arbitrarily allocated to
both features while remalnlng minimizers (no grouping property!):
For any solution 9.; |as8Es 95 Jasso. €QUIvalent minimizers:are:given by

gk'as:s =S (U‘Lusz T U“JAuzs) and gﬁuas:s = (1 S) . (Uk'asss T U“uasz)"‘-ﬂ“s € [01]
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