LASSO REGRESSION

Another shrinkage method is the so-called lasso regression (least
absolute shrinkage and selection operator), Which uses an L1 penalty on 6:

D
é;asso = arg;nin z”: (y(’) - BTx(i))z — /\Z A
=1

j=1

= arg;nin (y - XO)T (y — X60)+ )8

Optimization is much harder now. R 4(8) is still convex, but in general
there is no analytical solution and it is non-differentiable.
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LASSO REGRESSION /2

Let y = 3x; — 2x2 + €, € ~ N(0,1). The true minimizer is
6" = (3, —2)7. LHS = L1 regularization; RHS = L2
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With increasing regularization, O1asso IS pulled back to the origin, but
takes a different “route”. > eventually becomes 0!
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m LASSO REGRESSION /3
Contours of regularized objective for different A values.
L1 Regularization: A = 0 L1 Regulanization: A = 1
. s .-. s o de 2 X
L1 Regularization: A = 2 L1 Regularization: A = 10
. . ;‘ 2. y : i, Y .
Green = true minimizer of the unreg.objective and red = lasso solution.
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m LASSO REGRESSION /4

Regularized empirical risk Ryeq(f1, f2) using squared loss for A 1. L1 O 0O X
penalty makes non-smooth kinks at coordinate axes more pronounced,
while L2 penalty warps R, toward a “basin” (elliptic paraboloid). x O
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LASSO REGRESSION /s

We can also rewrite this as a constrained optimization problem. The

penalty results in the constrained region to look like a diamond shape.

moin'zj; (y“) —f (x"') | a) )2 subject to: [|0]|; < t

The kinks in L1 enforce sparse solutions because “the loss contours
first hit the sharp corners of the constraint” at coordinate axes where
(some) entries are zero.
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L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of orthonormal design X" X = I we can derive a closed-form
solution interms of fos = (X'X) "Xy = X'y

hasso = Sign(fous)(|fors| — A)-  (sparsity)

Function S(f, \) == sign(#)(/#] — A)- is called soft thresholding operator:
For |6] < Aitreturns 0, whereas params [#/| > A are shrunken toward 0 by A.
Comparing this to fzeee under orthionormal design:

~

Orage = (XX + M) 7' XTy = (1 + A)) "oy = fi—m\ (no sparsity)
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SUPPORT RECOVERY OF LASSO

When can lasso select true support of 8, i.e., only the non-zero parameters?
Can be formalized as sign-consistency:

P(sign(d) = sign(@)) — 1asn — o (where sign(0) := 0)
Suppose the true DGP given a partition into subvectors @ = (6,.8,)is
Y = X0 + & = X0, +X20, + e withe ~ (0,5°1)

and only 6, is non-zero. Let X; denote the n x g matrix with the relevant

features and X the matrix of noise features. It can be shown that é‘mo is sigm
consistent under an irrepresentable condition:

(X3 X )(X{ X;) "sign(@,)| < 1 (element-wise)

In fact, lasso can only be sign-consistent if this condition holds.
Intuitively. the irrelevant variables in Xz must not be too correlated with (or
representable by) the informative features
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