Introduction to Machine Learning

Regularization
Bayesian Priors

Learning goals
@ RRM is same as MAP in Bayes

@ Gaussian/Laplace prior corresponds
to L2/L1 penalty
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RRM VS. BAYES /2

The maximum a posteriori (MAP) estimator of @ is now the minimizer of

—logp(y|6.x) —logq(6).

@ Again, we identify the loss L(y, f(x | 8)) with — log(p(y|0, x)).

@ If g(@) is constant (i.e., we used a uniform, non-informative prior),
the second term is irrelevant and we arrive at ERM.

@ If not, we canidentify J(6) ~x — log(q(@)), i.e., the log-prior
corresponds to the regularizer, and the additional A, which controls
the strength of our penalty, usually influences the peakedness /
inverse variance / strength of our prior.
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m RRMVS. BAYES /s
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@ [2 regularization corresponds to a zero-mean Gaussian prior with constant
variance on our parameters: #; ~ A(0.7%)
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@ [1 corresponds to a zero-mean Laplace prior: 8, ~ Laplace(0,b). Laplace(j. b)
has density é exp(—l%1 ), with scale parameter b, mean j and variance 25°.

@ In both cases, regularization strength increases as variance of prior decreases:
more prior mass concentrated around 0 encourages shrinkage.

@ Elastic-net regularization comesponds to a compromise between Gaussian and
Laplacian priors & Zou and Hastie 2005
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EXAMPLE: BAYESIAN L2 REGULARIZATION

We can easily see the equivalence of L2 regularization and a Gaussian prior:

@ Gaussian prior N4(0, diag(72)) with uncorrelated components for 6:

Hw 2(8) = (2n7%) i‘}exp(—1—z: )

)=1

0"MAP

argmin(—logp(y | 8.x) — log q(8))

d
arg;nin (— logp(y|8.x) + £ log(2r7°) + # Zb”,z)
j=1
- in (- 2 a2
= argmin (- logp(y|0.) + 7 /0[

@ We see how the inverse variance (precision) 1/72 controls shrinkage
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m EXAMPLE: BAYESIAN L2 REGULARIZATION /2

® DGP y = # + = where = ~ N'(0,1) and 6 = 1; O O x
with Gaussian prioron #, so N'(0,72) for 7 € {0.25,0.5,2}
@ For n = 20, posterior of # and MAP can be calculated analytically x O
® Plotting the L2 regularized empirical risk Reeg(#) = D1, (i — #)? + A6?
with A = 1/72 shows that ridge solution is identical with MAP X X

@ In our simulation, the empirical mean is y = 0.94, with shrinkage toward
0 induced in the MAP
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