FOLLOW THE REGULARIZED LEADER

ar tmﬁ W f ; ithm, one can incorporate
Aty n un&?on v A E%%frﬁ)t

aregularizatio ction choice of FTL,
which leads to more stability.

o Mabeiméta precieellet lant 22l leader
a™ e arigin (u(a) - Z;_: (a.z,)) .

Learning goals
(Technicad side note: if themare more than one minimum, henoné of § s chosen)

then the algorithm choosing & ™" in timéstep t is ¢alled thé-Follow the
regularized leader (FTRL) algorithm. '@ 7@ tve for FIL
@® See asuitable regularization for
OLO problems

-
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FOLLOW THE REGULARIZED LEADER

@ To overcome the shortcomings of the FTL algorithm, one can incorporate
a regularization function 1> : A — R into the action choice of FTL,
which leads to more stability.

@ To be more precise, letfor t = 1
FTEL L A el
a; - @ 3'57','4‘”‘(‘ (a) E . (a.z,)) )

{Technical side note: if here are mare than one mnmum, hen one of tham = chosen)

thien the algorithm eHoosifig &/ ™" iri time step  is ealled the Follow the
regtilarized leader (FTAL) algorithm.

@ Interpretation: The algorithm predicts a; as the element in A, which
minimizes the regularization function plus the cumulative loss so far over
the previous t — 1 time periods.
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FOLLOW THE REGULARIZED LEADER

@ To overcome the shortcomings of the FTL algorithm, one can incorporate O O x
a regularization function 1> : A — R into the action choice of FTL,
which leads to more stability. x o

@ To be more precise, letfor t = 1

. s
a; ot @argmin (p(a) Z' (a.z,)) \
ac A =1

X X

{Technical side note: if here are mare than one mnmum, hen one of tham = chosen)

then the algotithm choosing af™" i time step f is called the Follow the
regtilarized leader (FTAL) algorithm.

® Interpretation: The algotithm predicts & as the element in A, which
mihimizes the regtlarizatioh fuhetioh pltis the etimulative loss so far over
the previous t — 1 time periods:

@ Obviously, the behavior of the FTRL algorithm is depending heavily on
the choice of the regularization function v If 1> = 0, then FTRL equals
FTL.
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REGULARIZATICN IN. ONLINE LEARNING VS.
BATCH LEARNING
[ L algorithm, or N incorporat
@ Notethatin'the batch learnmg scehario) the learner se'eks to“optimize an
objective functionwhich'is the sum of the training loss and a
o tegularization function;

Wy Dy a0
,;TJ'LE 2 lL(y 0) +Au(6).

where'X 2901 $ome regulanzatlon parameter. © ©4EC Follow the
regularized leader |
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REGULARIZATION IN ONLINE LEARNING VS.
BATCH LEARNING

@ Note that in the batch learning scenario. the learner seeks to optimize an
objective function which is the sum of the training loss and a
regularization function:

n

i (1) b
Jin > L(y*",0) + Au(8),

where A > 0is some regularization parameter.

@ Here, the regularization function is part of the whole objective function,
which the learner seeks to minimize.
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REGULARIZATION IN ONLINE LEARNING VS.
BATCH LEARNING

@ Note that in the batch learning scenario. the learner seeks to optimize an
objective function which is the sum of the training loss and a
regularization function:

n

: 0] !
fmin 2 L(y™.0) + Av(8),

where A > 0is some regularization parameter.

@ Here, the regularization function is part of the whole objective function,
which the learner seeks to minimize.

@ However, in the online learning scenario the regularization function does
(usually) not appear in the regret the learner seeks to minimize, but the
regularization function is only part of the action/decision rule at each time
step.
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i REGRETANALYSIS'OF FTRL: AHELPFUL LEMMA
Il BATCH LEARNING

| ® Lemma: Let a™™ g™ ... be the sequence of actions coming used by O O x
| o the ETRL algorithmforthe environmental datla-sequence Zio Zzotimize an
l Then;forall‘é'ew"t‘wehavew‘w f the training loss and a x O
l reqularization fun tjon

Ry L(é) - (:(a}r:mL{r) —(é.zr)‘} x x

=t min Yy L() a) a)
r T
< ¥(8) —v(ai) + ;(( fnz) — (a ze) -
her me regularization pgrgmeter

. @ Here. the reqularization fur f 1 f hol
| hich the learner minit
. @ H rin tf nline learnin enario the r larizatior f
. ally) 1 i ir in the regret the learnetr minir f
. larization fur f nl 1 the a f nrule at each tir
|
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REGRET ANALYSIS OF FTRL: A HELPFUL LEMMA

® Lemma: Let &™™ &™ ... be the sequence of actions coming used by
the FTRL algorithm for the environmental data sequence z;, 2z, .. ..
Then, for all 2 € A we have

Z ((&™, z) - (2:2z))

< pfa)— {fa L)+Z‘(arrm. ) — (&1 ze)) )

=1

@ Interpretation: the regret of the FTRL algorithm is bounded by the
difference of cumulated losses of itself compared to its one-step
lookahead cheater version and an additional regularization difference
term.

= We have seen an analogous result for FTL!

(The proofis smiar)

]
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FTRL'FOR ONLINE LINEAR OPTIMIZATION = VIV A

@ Inthefollowing. we analyze the ETRL algorithm for the linear loss - - |

O0X

(& z) 212l 1z foronline linear optimization { QLQ}-preblems.

® Forthispurpose. the'squared L2-norm regularization will be used:

«

(w(a) 5

» a'a

1
2_}1 La;nz_*“‘z_u~ x x

where 77 is some positive scalar, the regularization magnitude.

«
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FTRL FOR ONLINE LINEAR OPTIMIZATION

@ In the following. we analyze the FTRL algorithm for the linear loss
(a:z) 1= a’ zidvonlinedinear optimization { OLO) problems:
@ For this purpose, the squared L2-norm regularization will be used:
1 a'a
W(a) = o |lallz = -—
27 27
where 1) is some positive scalar, the regularization magnitude.

® Itis straightforward to compute that if A = R, then

-1
aFTRL
—17 Zs.
t ’551 s
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FTRL FOR ONLINE LINEAR OPTIMIZATION

@ In the following. we analyze the FTRL algorithm for the linear loss
(a:z) 1= a’ zidvonlinedinear optimization { OLO) problems:

@ For this purpose, the squared L2-norm regularization will be used: x O
1 , a'a
Nna) = —.a = —.
via) 21;” ll2 2n x X
where 1) is some positive scalar, the regularization magnitude.
@ It is straightforward to compute that if 4 = R, then

FTRL t—1
= —1 Zs.
t 1 45

@ Hence, in this case we have for the FTRL algorithm the following update
rule

gt — gm _ gz, t=1,.... T—1.
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FTRL FOR ONLINE LINEAR OPTIMIZATION

@ In the following. we analyze the FTRL algorithm for the linear loss
(a:z) 1= a’ zidvonlinedinear optimization { OLO) problems:

@ For this purpose, the squared L2-norm regularization will be used:

1 > a'a
Wa) = —llall; = 5—.
27 27
where 1) is some positive scalar, the regularization magnitude.

@ It is straightforward to compute that if 4 = R, then
r—1
a = —l}th Zs.

@ Hence, in this case we have for the FTRL algorithm the following update

rule

AT g™ p— 1 T—1.

Interpretation: —z; is the directionin which the update of a&i™" to & ™" is

conducted with step size 7 in order to reduce the loss.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Propositiont Using the FTRL alg orithm with 'the equ ared L2-norm
regularization’on'any onling:linear optimization (OLO) problem with
o &G /RY leads to a regret of. FTRL with respect 1o,any astion .64 of

RETAL(5f < 7 ,a“§+z;i Z2.

ildl

| |
o
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proposition: Using the FTRL algorithm with the squared L2-norm
regularization on any online linear optimization (OLO) problem with
A &9 leads to a regret of FTRL with respect to any action 2 € A of

T
- 1 .2 2
RF™(&) < 5 I1allz + )zl
=1

@ We will show the result only for the case A = R7.

@ For the more general case, where A is a strict subset of R?, we need a
slight modification of the update formula above:

t—1 2

) t—1 , |l |l
7[1_‘\(.—1;21712. argmmHa—l;Z ‘ .H .
- = ,

In words, the action of the FTRL algorithm has to be projected onto the
set A. Here, N4 : RY — A isthe projection onto A.

{The poof is essertially the same, except that the Cauchy Schwarz noquality is used inbetween.)
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FTRL FOR OLO: THEORETICAL GUARANTEES

® Prooft

Reminder (1): A7 —(a) < v(a) — v(a ") + Z (&™.z)~ (a5.2)).

Reminder (2): &1 =@ — =z te=Y, . 2T 1.

@ For sake of brevity, we write a. a. ... for & ".ah ~. ...

| |
o
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proof:

Reminder (1): /A7 (&) < (&) - u-(afm)~-Z((a{m.z,)—(aﬁl.z,)).

Heminder {2): a,".”‘,*:af"’*- 12, t=I1..... T—11.

@ For sake of brevity, we write ai. a. ... for & ™. a5l ™. ...

@ With this,
R (@) < w(@) — v(a) + Z: ((a.z7) = (a1, 21)) {(Reminder (1))
- 2l,, I3 4 Z, ,(af zi— a1z1) (¥(a) = 0 and definition of )
- 2%, Iz + Z,Y ,(a; ai1)z (Distributivity)
- zl,, Iz + ”Z: , 213 (Reminder (2))
O
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FTRL FOR OLO: THEORETICAL GUARANTEES

® Interpretation of the terms in the proposition, i.e., of

FTAL /= - 1 112 D
R,'. l(a) < 2_ J‘ tt I‘l\ T "
1

| |
o
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ |Interpretation of the terms in the proposition, i.e., of

- 1. ~
AT (&) < llallz + ) |1
n .

e ||a : represents a bias term: The regret upper bound of FTRL is always
biased by the term || 3| \: The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of ;.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ |Interpretation of the terms in the proposition, i.e., of

- 1. ~
AT (&) < llallz + ) |1
n .

° ||é||§ represents a bias term: The regret upper bound of FTRL is always
biased by the term || & |§ . The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of ).

@ 5 ||z/|: represents a 'variance" term: The more the environment data z

varies, the larger this term. Hence, for a high variance a smaller
regularization magnitude is needed, i.e., a smaller choice of 7).
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ |Interpretation of the terms in the proposition, i.e., of

- 1. ~
AT (&) < llallz + ) |1
n .

° ||é||§ represents a bias term: The regret upper bound of FTRL is always
biased by the term || & |§ . The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of ).

® O z|| represents a variance”term: The more the environment data z

varies, the larger this term. Hence, for a high variance a smaller
regularization magnitude is needed, i.e., a smaller choice of 7.

@ Thus, we have a trade-off for the optimal choice of 7 : Making ) large, leads to a
smaller bias but at the expense of a higher variance and making ) small leads to
a smaller variance at the expense of a higher bias.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ |Interpretation of the terms in the proposition, i.e., of

- 1. ~
AT (&) < llallz + ) |1
n .

° ||é||§ represents a bias term: The regret upper bound of FTRL is always
biased by the term || & |§ . The impact of the bias term can be reduced by a
higher regularization magnitude, i.e., a higher choice of ).

® O z|| represents a variance”term: The more the environment data z

varies, the larger this term. Hence, for a high variance a smaller
regularization magnitude is needed, i.e., a smaller choice of 7.

@ Thus, we have a trade-off for the optimal choice of 7 : Making # large, leads to a
smaller bias but at the expense of a higher variance and making ) small leads to
asmaller variance at the expense of a higher bias.

=+ With the right choice of #;, we can prevent the instability of FTRL for an online
linear optimization (OLO) problem.
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FTRL FOR OLO: THEORETICAL GUARANTEES

® Unhdercertain’assumptions we can-bal- ¥ e
ance the trade-off induced by the bias
and the variance by ehoosing 7-appro-
priately.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Under certain assumptions we can bal- UV R
ance the trade-off induced by the bias A
and the variance by choosing 7 appro- S —
priately. v >

Oyiwal chace o

@ Corollary: Suppose we use the FTRL algorithm with the squared
L2-norm regularization on an online linear optimization problem with
A < B such that
® supz. 4 |8, = Bfor some finite constant B > 0,
® sup,-z |2/, = Vforsomefinite constant V > 0.

o
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Under certain assumptions we can bal- \ -
ance the trade-off induced by the bias A
and the variance by choosing 7 appro- S —
priately. :

Opeiwal chace f o

@ Corollary: Suppose we use the FTRL algorithm with the squared
L2-norm regularization on an online linear optimization problem with
A c B9 such that

® supg. 4 |/8||, < Bfor some finite constant B > 0,
® sup,-z |2/, = Vforsome finite constant V = 0.

Then, by choosing the step size 7 for FTRL as 7 E_ it holds that

V2T

RITAL < BV\2T.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Under certain assumptions we can bal- \ —
ance the trade-off induced by the bias N\, A
and the variance by choosing 7 appro- S —
priately. :

Oyiwal chace o

@ Corollary: Suppose we use the FTRL algorithm with the squared
L2-norm regularization on an online linear optimization problem with
A c B9 such that

® supg. 4 |/8||, < Bfor some finite constant B > 0,
® sup,-z |2/, = Vforsome finite constant V = 0.

Then, by choosing the step size 7 for FTRL as 7 = —2= it holds that

V\v”Z_r
RITAL < BV\2T.

@ Note that the (optimal) parameter 7 depends on the time horizon T,
which is oftentimes not known in advance. However, there are some
tricks (i.e.. the doubling trick). which can help in such cases.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proof:
& Bythe!latter! 1n0uce andthelassumptions

T
y 1 ’ - ’
FTAL ¢ = <112 2
Ry ™ (a) — |lallz + 1 E Hall5
=1

+F/TV2.

N e
vEmE W
Doe &
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proof:
o By the latter proposition and the assumptions

T
- 1 .
R{T™(a) 2—,’||a||§ +n ||zl
=1
B2
— T V2.
27 +a

@ The right-hand side of the latter display is independent of a, so that

B? .
R';mt < — 49T V2
2n
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FTRL FOR OLO: THEORETICAL GUARANTEES
@ Proof:

o By the latter proposition and the assumptions

T
- 1 ..
R (3) 2—,’||a||§ +0 )|zl
=1
8
— T V2.
27 +a

@ The right-hand side of the latter display is independent of &, so that

2
R’;mL < B—+1;T\ﬂ.
27

@ Now, the right-hand side of the latter display is a function of the
form f(7) = a/n + by for some suitable a, b > 0.
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proof:

o By the latter proposition and the assumptions

T
- 1 . 2
R{T™(a) 2—,’||a||§ +n ||zl
=1
B2
— T V2.
27 +a

@ The right-hand side of the latter display is independent of &, so that

2
R S
27

@ Now, the right-hand side of the latter display is a function of the
form f(7) = a/n + by for some suitable a, b > 0.

@ Minimizing f with respect to 7 results in the minimizer " v 82—7'
N
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FTRL FOR OLO: THEORETICAL GUARANTEES

@ Proof:
o By the latter proposition and the assumptions

T
- 1 .
R{T™(a) 2—,’||a||§ +n ||zl
=1
B2
— T V2.
27 +a

@ The right-hand side of the latter display is independent of &, so that

2
R S
27

@ Now, the right-hand side of the latter display is a function of the
form f(7) = a/n + by for some suitable a, b > 0.

@ Minimizing f with respect to 7 results in the minimizer " = ™ ?’z—r‘
@ Plugging this minimizer into the latter display leads to the asserted
inequality. O
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DESIREDARESULTSEORETICAL GUARANTEES

® Wit¥the FTRL algorithm we can cope with O O x
3 onling dilAdratic sptimization {GQ0) problems by using no x O
regularity (> = 0). In this case, we have satisfactory regret
guarantees and also-a-quick update rule for afTj" (It is_,\jgst the
empirical average over all data points seen till t), X x

I '

@ The right-hand side of the latter display is independent of a. so that

@ Now, the right-hand side of the latter display is a function of the
rorm () a b1 for some suitable a. ¢ i

e Minimizing f with respect to 1 results in the minimizer ——

@ Plugging this minimizer into the latter display leads to the asserted
inequality O
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DESIRED RESULTS

@ With the FTRL algorithm we can cope with

@ online quadratic optimization (OQO) problems by using no
regularity (1> = 0). In this case, we have satisfactory regret
guarantees and also a quick update rule for ai"}" (It is just the
empirical average over all data points seen till f),

@ online linear optimization (OLO) problems by using a suitable
regularization function. In this case, we have quick update formulas
and satisfactory regret guarantees as well.
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DESIRED RESULTS

@ With the FTRL algorithm we can cope with

@ online quadratic optimization (OQO) problems by using no
regularity (1> = 0). In this case, we have satisfactory regret
guarantees and also a quick update rule for ai"}" (It is just the
empirical average over all data points seen till f),

@ online linear optimization (OLO) problems by using a suitable
regularization function. In this case, we have quick update formulas
and satisfactory regret guarantees as well.

= But what about other online learning problems or rather other loss
functions?

@ What we wish to have is an approach such that we can achieve for a
large class of loss functions the advantages of FTRL for OLO and OCO
problems:

(a) reasonable regret upper bounds;
(b) a quick update formula.
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DESIRED RESULTS

@ With the FTRL algorithm we can cope with

@ online quadratic optimization (OQO) problems by using no
regularity (v» = 0). In this case, we have satisfactory regret
guarantees and also a quick update rule for a1~ (It is just the
empirical average over all data points seen till t),

@ online linear optimization (OLO) problems by using a suitable
regularization function. In this case, we have quick update formulas
and satisfactory regret guarantees as well.

> But what about other online learning problems or rather other loss
functions?

@ What we wish to have is an approach such that we can achieve for a
large class of loss functions L the advantages of FTRL for OLO and OCO
problems:

(a) reasonable regret upper bounds;
(b) a quick update formula.
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