ONLINE GRADIENT DESCENT

Atﬂ;:‘ﬁﬁ@ c?ﬂ%mfé(@m%with step size 1 > 0 O O x
chooses its action x O

{Technical side nate: For this update formua we assume that A = R?. Morsover, the frst action a?;u is arbivary. ) x x

a
Learning goals
@® Know the connection between
OGD and FTRL via linearization
of convex functions
) @ See how this implies rearet
e bounds for OGD
-
_|

_ B Advanced Machine Leaming -~ 1/5

Online CorfveX Optinizatibn' =Part2- @

|




ONLINE GRADIENT DESCENT

@ The Online Gradient Descent (OGD) algorithm with step size 1 > 0
chooses its action by

o =& V(@™ z)). t=1,...T. (1)
{Technical side note: Forthis update formuawe assume that A = R, Morover, the frst acion .1?:" is arbivary. )

@ We have the following connection between FTRL and OGD:

o Letz7® = V (&, z)forany t =1,..., T.
@ The update formula for FTRL with » norm regularization for the
linear loss L}** and the environmental data z/* is

FIRL FTRL ~ 03D FTRL 03D
ay = & Nz = a nVala™. z).

o If we have that &/™ = a{“®_then it iteratively follows that
ai-=a® foranyt =1,..., T in this case.
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

18 Waorithn

o Wlth the dellberatlons above we can infer that
F— T - ~
R;-’r(a (Zr)’) = Zr ‘ (aFuD. ZF) A (a..z{)
< Zr ‘ le(a“..r ....I)) Llin(é.zr:GD)

@ We have tl (ifvafft enaf Tty ket rtlm.‘ 4 OGD: .. .
— len . Llll‘l a. 2;..2‘
o S o 5660 1m0
o The updateofti (& RFE Ml L, norm regularizat

I il L \ mental gata .
where we write in the subscripts of the regret the corresponding loss
function and also includethe corrésponding environmentaldata as a
second argument in order to emphasize the connections. ‘
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ONLINE GRADIENT DESCENT: DEFINITION AND
PROPERTIES

@ With the deliberations above we can infer that
r 0 3 -
Ry*(a| (1)) = Zr:t (&5 ze) —(a(z)
T
< ling 0GD 506Dy _ lingy 506D
- Zr=1 L (af 12t ) L (a*zr )
(if &f® = aj™) Zr

=

= Rra (3] (Z%)).

1 Llin(a:-'m.L‘?:)GD) . Llin(é, 2:)61))

where we write in the subscripts of the regret the corresponding loss
function and also include the corresponding environmental data as a
second argument in order to emphasize the connections.

@ Interpretation: The regret of the FTRL algorithm (with 2 norm
regularization) for the online linear optimization problem (characterized
by the linear loss L*i*) with environmental data 27 is an upper bound
for the OGD algorithm for the online convex problem (characterized by a
differentiable convex loss ) with the original environmental data z;.

]
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ONLINE GRADIENT DESCENT: REGRET O AND
PROPERTIES
@ Due to this connection we immediately obtain a similar decomposition of O O x
@ thelregret upperboundiintocablastermcanda variance term as for the
FTRL algorithm for OLO problems. X O

@ Comllary Using the OGD algorlthm on any onllne convex optimization
problem (with differentiable loss function ) leadsto,a regret of OGD with X X
respect to any action @ € A of
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ONLINE GRADIENT DESCENT: REGRET

@ Due to this connection we immediately obtain a similar decomposition of
the regret upper bound into a bias term and a variance term as for the
FTRL algorithm for OLO problems.

@ Corollary. Using the OGD algorithm on any online convex optimization
problem (with differentiable loss function ) leads t0@ regret ob OGD with
respect to any action a € A of

W | J— T ||i=zcan |2
Ry (@) = 7 alz+my

T
1174 0 2
= — @ +m Y |IVE )

@ Note that the step size 7 > 0 of OGD has the same role as the
regularization magnitude of FTRL: It should balance the trade-off
between the bias- and the variance-term.
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ONLINE GRADIENT DESCENT: REGRET

@ Asa iconsequence]we canalsederivie alsimilar order of the regretifor the
OGD:algorithm on:OCO problems as forthe FTRL1on<OLO prablemis-by

lmposmg a shghtty different-assumption on the (new) “variance” term
2

Zf—-l UV a(8, 2ol
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ONLINE GRADIENT DESCENT: REGRET

@ As a consequence, we can also derive a similar order of the regret for the
OGD algorithm on OCO problems as for the FTRL on OLO problems by
imposing a slightly different assumption on the (new) “variance” term

T 06D 2
Er=1 IIVa(ﬁF‘"'n-Zr) '2 4

@ Corollary: Suppose we use the OGD algorithm on an online convex
optimization problem with a convex action space .A C B9 such that

® supae 4 ||, = Bfor some finite constant B =
@ Supa ez ||V (a.z) , = Vforsome f|n|te constant V=0

Then, by choosing the step size 7 for OGD as 1 = we get

V_T

R%® < BV\2T.
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REGRETLOWER BOUNDS FORGCO -1

® Theorem. For any onling learming algorithm there exists an onlme
convex optlmizamn problem charatitenzed by AL on OL

vdlldl

o a convex loss functlon

@ Corollary: Su we u I D algorithi n ar
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

@ a convex loss function |
¢ a bounded (convex) action space A = [—B, B]? for some finite
constant B = 0,
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

e a convex loss function !

¢ a bounded (convex) action space A = [—B, B]? for some finite
constant B > 0,

¢ and bounded gradients sup,- 4 .-z || Va(a. 2)||, < V for some
finite constant V = 0,
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

@ a convex loss function !

¢ a bounded (convex) action space A = [—B, B]? for some finite
constant B > 0,

¢ and bounded gradients sup,- 4 .-z || Val2oz) |, = Viforsome
finite constant V > 0,

such that the algorithm incurs a regret of Q(+/T) in the worst case.
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

@ a convex loss function !

¢ abounded (convex) action space A = [—8, B]“ for some finite
constant B > 0,

¢ and bounded gradients sup,- 4 .-z || Val2oz) |, = Viforsome
finite constant V > 0,

such that the algorithm incurs a regret of Q(/T) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,
we have R < BV\/2T.

Advanced Machine Leaming ~ 5/5



REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

@ a convex loss function !

¢ abounded (convex) action space A = [—8, B]“ for some finite
constant B > 0,

¢ and bounded gradients sup,- 4 .-z || Val2oz) |, = Viforsome
finite constant V > 0,

such that the algorithm incurs a regret of Q(/T) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,

we have RT™ < BV\/2T.

~+ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T.
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REGRET LOWER BOUNDS FOR OCO

@ Theorem. For any online learning algorithm there exists an online
convex optimization problem characterized by

e a convex loss function L,

e a bounded (convex) action space A = [—B, B|? for some finite
constant B > 0,

¢ and bounded gradients sup,- 4 -¢ 2

zez ||Val(a, z)||, < V for some
finite constant V > 0,
such that the algorithm incurs a regret of (/T ) in the worst case.

@ Recall that under (almost) the same assumptions as the theorem above,
we have RY™ < BV/2T.

~+ This result shows that the Online Gradient Descent is optimal regarding
its order of its regret with respect to the time horizon T.
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