ONLINE CONVEX OPTIMIZATION

One of the most relevant instantiations of the online learning problem is the problem of online convex optimization (OCO), which is characterized by a loss function

Online Convex Optimization - Part 1

which is convex w.r.t. the action, i.e., $a \mapsto (a, z)$ is convex for any $z \in \mathcal{Z}$.

Learning goals

- Get to know the class of online convex optimization problems
- Derive the online gradient descent as a suitable learning algorithm for such cases

ONLINE CONVEX OPTIMIZATION

 One of the most relevant instantiations of the online learning problem is the problem of online convex optimization (OCO), which is characterized by a loss function

$$L: \mathcal{A} \times \mathcal{Z} \to \mathbb{R},$$

which is convex w.r.t. the action, i.e., $a \mapsto (a \nmid z)$ is convex for any $z \in Z$. $z \in Z$.

- Note that both OLO and OQO belong to the class of online convex optimization problems:
 - Online linear optimization (OLO) with convex action spaces:

$$(a,z)=a^{\top}z$$

is a convex function in $a \in A$, provided A is convex.

Online quadratic optimization (OQO) with convex action spaces:

$$(a, z) = \frac{1}{2} ||a - z||_2^2$$

is a convex function in $a \in \mathcal{A}$, provided \mathcal{A} is convex.

• We have seen that the FTRL algorithm with the inorm regularization is $\psi(a) = \frac{1}{2} alchieves$ satisfactory results for online linear aracterized optimization (OLO) problems, that is, if $(a,z) = L^{\text{lin}}(a,z) := a^{\text{T}}z$, then we have which is convex w.r.t. the action i.e., $a \mapsto L(a,z)$ is convex for any $z \in Fast \ updates \longrightarrow \text{If } A = \mathbb{R}^d$, then

- Note that both OLO at the pellon y z_t, the class of online convex
 - optimization problems:

 Regret bounds By an appropriate choice of η and some (mild)
 - Assumptions on A and 2. We have the convex action spaces:

$$R_T^{\text{FTRE}} = o(T).$$

is a convex function in $a \in A$, provided A is convex.

Online quadratic optimization (OQO) with convex action spaces:

$$L(a, z) = \frac{1}{2} ||a - z||_2^2$$

is a convex function in $a \in A$, provided A is convex.

Apparently, the nice form of the loss function $L^{1\mathrm{in}}$ is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{1\mathrm{in}}(a,z) = 2$ note that the update rule can be written as results for online linear optimization (OLO) problems, that is, if $L(a,z) = L^{1\mathrm{in}}(a,z) := a^{\top}z$, then

optimization (OLO) problems, that is, if
$$L(a,z) = L^{\text{lin}}(a,z) := a^{\top}z$$
, then we have $a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t = a_t^{\text{FTRL}} - \eta \nabla_a L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$.

• Fast updates — If $A = \mathbb{R}^d$, then

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta z_t, \qquad t = 1, \dots, T;$$

 Regret bounds — By an appropriate choice of η and some (mild) assumptions on A and Z, we have

$$R_T^{\text{FTRL}} = o(T).$$

Apparently, the nice form of the loss function L^{lin} is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{\text{lin}}(a,z) = z$ note that the update rule can be written as

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t = a_t^{\text{FTRL}} - \eta \, \nabla_a \mathcal{L}^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the most recent loss (represented by $-\nabla L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η

Apparently, the nice form of the loss function L^{lin} is responsible for the appealing properties of FTRL in this case. Indeed, since $\nabla_a L^{\text{lin}}(a,z) = z$ note that the update rule can be written as

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t = a_t^{\text{FTRL}} - \eta \, \nabla_a \mathcal{L}^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the most recent loss (represented by $-\nabla L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η

⇒ Gradient Descent.

Apparently, the nice form of the loss function L^{11n} is responsible for the **Question**: How to transfer this idea of the Gradient Descent for the appealing properties of F-H-I in this case indeed since update formula to other loss functions, while still preserving the regret that the update rule can be written as bounds?

$$a_{t+1}^{\text{FTRL}} = a_t^{\text{FTRL}} - \eta \, z_t = a_t^{\text{FTRL}} - \eta \, \nabla_a L^{\text{lin}}(a_t^{\text{FTRL}}, z_t).$$

Interpretation: In each time step t+1, we are following the direction with the steepest decrease of the most recent loss (represented by $-\nabla L^{\text{lin}}(a_t^{\text{FTRL}}, z_t)$) from the current "position" a_t^{FTRL} with the step size η

⇒ Gradient Descent.

- Question: How to transfer this idea of the Gradient Descent for the update formula to other loss functions, while still preserving the regret bounds?
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y - x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x - y)^\top \nabla f(x)$ for any $x, y \in S$.

- Question: How to transfer this idea of the Gradient Descent for the update formula to other loss functions, while still preserving the regret bounds?
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y-x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x-y)^\top \nabla f(x)$ for any $x, y \in S$.

$$(a,z)-(\tilde{a},z)\leq (a-\tilde{a})^{\top}\nabla_{a}(a,z), \quad \forall a,\tilde{a}\in\mathcal{A},z\in\mathcal{Z}.$$

- CReminder: Hd(A)(Z) tra(Ã)(Z) ≦i(Adeã)or Vra(€)Z)die MADÃ Soda Z 16r Ãne update formula to other loss functions, while still preserving the regret bounds?
- Solution (for convex losses): Recall the equivalent characterization of convexity of differentiable convex functions:

$$f: S \to \mathbb{R}$$
 is convex $\Leftrightarrow f(y) \ge f(x) + (y-x)^\top \nabla f(x)$ for any $x, y \in S$
 $\Leftrightarrow f(x) - f(y) \le (x-y)^\top \nabla f(x)$ for any $x, y \in S$.

$$L(a,z) - L(\tilde{a},z) \le (a - \tilde{a})^{\top} \nabla_a L(a,z), \quad \forall a, \tilde{a} \in \mathcal{A}, z \in \mathcal{Z}.$$

Reminder: $(\tilde{a},z) - (\tilde{a}(\tilde{z}) \preceq (\tilde{a}(-\tilde{a})) \otimes (\tilde{a}(-\tilde{$

Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_t := ∇_a(a_t, z_t) and note that

Reminder: $(a,z) - (\tilde{a}(\tilde{z}) \preceq (a - \tilde{a}) - \tilde{a}) \nabla_a (a/z), z) \forall a, \tilde{a} \in A, z \in Z.$

Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_t := ∇_a(a_t, z_t) and note that it

$$\begin{split} \boldsymbol{R_T}(\boldsymbol{\tilde{a}}) &= \sum_{t=1}^T \left(\boldsymbol{a}_t, \boldsymbol{z}_t\right) - \left(\boldsymbol{\tilde{a}}, \boldsymbol{z}_t\right) \leq \sum_{t=1}^T \left(\boldsymbol{a}_t - \boldsymbol{\tilde{a}}\right)^\top \, \nabla_{\boldsymbol{a}}(\boldsymbol{a}_t, \boldsymbol{z}_t) \\ &= \sum_{t=1}^T \left(\boldsymbol{a}_t - \boldsymbol{\tilde{a}}\right)^\top \, \boldsymbol{\tilde{z}}_t = \sum_{t=1}^T \boldsymbol{a}_t^\top \, \boldsymbol{\tilde{z}}_t - \boldsymbol{\tilde{a}}^\top \, \boldsymbol{\tilde{z}}_t = \sum_{t=1}^T \boldsymbol{L}^{\text{lin}}(\boldsymbol{a}_t, \boldsymbol{\tilde{z}}_t) - \boldsymbol{L}^{\text{lin}}(\boldsymbol{\tilde{a}}, \boldsymbol{\tilde{z}}_t). \end{split}$$

$$\textbf{Reminder:} \quad (\underline{a};z)) - (\underline{\tilde{a}}(\underline{z}) \not \leq (\underline{a}(\underline{a}|\underline{\tilde{a}}) \overline{\tilde{a}}) \nabla_{\underline{a}} (\underline{a}/\underline{z}), z) \forall \underline{a}, \widetilde{a} \in \widecheck{\mathcal{A}}; z \in \mathcal{Z}; \ \mathcal{Z}.$$

Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_t := ∇_a(a_t, z_t) and note that it

$$\begin{split} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t}, \mathbf{z}_{t} \right) - \left(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t} \right) \mathbf{z}_{t} \underbrace{\sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{a}}_{t} \right)^{T}}_{\mathbf{z}_{t}} \tilde{\mathbf{a}}_{t}, \mathbf{z}_{t} \underbrace{\mathbf{z}_{t}}_{\mathbf{z}_{t}} = \sum_{t=1}^{T} \mathbf{a}_{t}^{\top} \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{\top} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1 \text{in}} \left(\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t} \right) - L^{1 \text{in}} (\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t}). \end{split}$$

Conclusion: The regret of a learner with respect to a differentiable and convex loss function is bounded by the regret corresponding to an online linear optimization problem with environmental data $\Xi_t = \nabla_a(a_t, z_t)$.

$$\textbf{Reminder:} \quad (a,z) \mapsto (\tilde{a},\tilde{z}) \not \leq (a (-\tilde{a})^{\frac{1}{a}}) \nabla_{a}(a,z), \ z) \forall a, \tilde{a} \in \tilde{A}, \ z \in \mathcal{Z}, \ \mathcal{Z}.$$

Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute ž_t := ∇_a(á_{ti},z_t) and note that t

$$\begin{aligned} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}, \mathbf{z}_{t}) - (\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t}) \succeq \sum_{t=1}^{T} (\hat{\mathbf{a}}_{t}, \tilde{\mathbf{a}}_{t}) \tilde{\mathbf{a}}_{t}^{T}) \tilde{\nabla}_{\mathbf{a}} (\mathbf{a}_{t}, \mathbf{z}_{t}), \mathbf{z}_{t}) \\ &= \sum_{t=1}^{T} (\mathbf{a}_{t} - \tilde{\mathbf{a}})^{\top} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} \mathbf{a}_{t}^{\top} \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{\top} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1 \text{in}} (\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t}) - L^{1 \text{in}} (\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t}). \end{aligned}$$

 We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!

$$\textbf{Reminder:} \quad (\underline{a}(z)) - (\tilde{\underline{a}}(z) \not \leq (\underline{a}(-\tilde{\underline{a}})\bar{\underline{b}}) \bar{\nabla}_{\underline{a}}(a/z), z) \forall \underline{a}, \tilde{\underline{a}} \in \mathcal{A}, z \in \mathcal{Z}; \ \mathcal{Z}.$$

Let z₁,..., z_T arbitrary environmental data and a₁,..., a_T be some arbitrary action sequence. Substitute z

_r := ∇_a(a_{r̄,|z_r|}) and note that t

$$\begin{split} R_{T}(\tilde{\mathbf{a}}) &= \sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t}, \mathbf{z}_{t} \right) - \left(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{z}}_{t} \right) \mathbf{z}_{t} \underbrace{\sum_{t=1}^{T} \left(\tilde{\mathbf{a}}_{t}, \tilde{\mathbf{a}}_{t} \right)^{T}}_{t} \widetilde{\mathbf{a}}_{t}(\mathbf{a}_{t}, \mathbf{z}_{t}), \mathbf{z}_{t}) \\ &= \sum_{t=1}^{T} \left(\mathbf{a}_{t} - \tilde{\mathbf{a}} \right)^{T} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} \mathbf{a}_{t}^{T} \tilde{\mathbf{z}}_{t} - \tilde{\mathbf{a}}^{T} \tilde{\mathbf{z}}_{t} = \sum_{t=1}^{T} L^{1 \text{in}} \left(\mathbf{a}_{t}, \tilde{\mathbf{z}}_{t} \right) - L^{1 \text{in}} (\tilde{\mathbf{a}}, \tilde{\mathbf{z}}_{t}). \end{split}$$

- We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!
- Incorporate the substitution $\tilde{z}_t = \nabla_a(a_t, z_t)$ into the update formula of FTRL with squared L2-norm regularization.

ONLINE GRADIENT DESCENT: DEFINITION

- The corresponding algorithm which chooses its action according to these
- considerations is called the Online Gradient Descent (OGD) algorithm with step size η > 0 at tholds in particular, and note that

$$R_{T}(\tilde{\boldsymbol{a}}) = \sum_{t=1}^{T} L(\tilde{\boldsymbol{a}}_{t}^{T}, \tilde{\boldsymbol{z}}_{t}^{T}) = a_{t}^{\text{DGD}} - \eta \nabla_{\boldsymbol{a}} (a_{t}^{\text{DGD}}, \boldsymbol{z}_{t}^{T}) + \sum_{s=1}^{T} (a_{t}, \tilde{\boldsymbol{z}}_{t}^{T})^{T} \nabla_{\boldsymbol{a}} L(a_{t}, \tilde{\boldsymbol{z}}_{t}^{T})^{T}.$$
(1)
(Technical side note: For this update formula we assume that $A = \mathbb{R}^{d}$. Moreover, the first action a_{t}^{DSD} is arbitrary.)

$$=\sum_{t=1}^{T}(a_{t}-\tilde{a})^{\top}\,\tilde{z}_{t}=\sum_{t=1}^{T}a_{t}^{\top}\,\tilde{z}_{t}-\tilde{a}^{\top}\,\tilde{z}_{t}=$$

Conclusion: The regret of a learner with respect to a differentiable and convex loss function L is bounded by

- We know: Online linear optimization problems can be tackled by means of the FTRL algorithm!
- \rightarrow Incorporate the substitution $\bar{z}_t = \nabla_a L(a_t, z_t)$ into the update formula of FTRL with squared L2-norm regularization.

ONLINE GRADIENT DESCENT: DEFINITION

The corresponding algorithm which chooses its action according to these
considerations is called the *Online Gradient Descent* (OGD) algorithm
with step size η > 0. It holds in particular,

$$a_{t+1}^{\text{OGD}} = a_t^{\text{OGD}} - \eta \nabla_a L(a_t^{\text{OGD}}, z_t), \quad t = 1, \dots, T.$$
 (1)

(Technical side note: For this update formula we assume that $A = R^d$. Moreover, the first action a_i^{000} is arbitrary.)

