Introduction to Machine Learning

Nonlinear SupporiVector Machines
Reproducing KernelHilbert Space and

Representer Theorem
Learning-goals

© "Know that for'every kernel'there is an
associated feature map and space
(Meércer's Theorem)

- . @ Know that this feature map is not
unique, and the reproducing kernel
) Hilbert space (RKHS) is a reference
K space
" yse A @ _Know the representation of the
solutionofia-SVM is given by the
representer theorem



REPRODUCING KERNEL HILBERT SPACE

There are many possible Hilbert spaces and feature maps for the
same kernel, but they are all “equivalent” (isomorphic).

Itis often helpful to have a reference space for a kernel k(- -),
called the reproducing kernel Hilbert space (RKHS).

The feature map of this space is
o: X = C(X); x> k(x,-),

where:C(.X') is:the-space-of continuous:functions: X'’ — R. The

"features" of the RKHS are the kernel functions evaluated at an x.

The Hilbert space is the completion of the span of the features:

® = span{¢(x)|x € X'} C C(X) .
The so-called reproducing property states:

(K(x,-), k(%)) = (6(x). 6(X)) = k(x.%).
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REPRODUCING KERNEL HILBERT SPACE /2

@ The RKHS provides us with a useful interpretation: OO0 x
aninputx € A’ mapped to the basis function ¢(x) = k(x,-).

@ The kernel maps 2 points and computes the inner product: X O

(k(x,-), k(X,-)) = k(x.x) . X x

@ This is best illustrated with the Gaussian kernel.
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REPRODUCING KERNEL HILBERT SPACE /3

@ Caveat: Not all elements of the Hilbert space are of the form
k(x,-) forsomex € A’

® A general element in the span takes the form

zn:(lik (x('). ) cd .

i=1
@ A general element in the closure of the span takes the form
ok (X(i). ) cd .

~
=1

with Y0 af < oc.
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REPRODUCING KERNEL HILBERT SPACE /4
What is (f, g) for two elements

O
n m
f=Y aik (x(‘),-) . g=)_ Bk (x‘”, ) ? X O
i=1 j=1
We:usethebilinearity of the:inner praduct:

<in,k (x.-) ,g;‘},k (x0. )> -

The kernel defines the inner products of all elements in the span of the
basis functions.
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m REPRESENTER THEOREM /2

@ Hence, we can restrict the SVM optimization problem to the
finite-dimensional subspace span {¢ (x()) ..., ¢ (x(?) }.
Its dimension grows with the size of the training set.

@ More explicitly, we can assume the form

— n.,, N}
9_’2_1:3, w(x )

forthecweight vecton O d|
@ The SVM prediction onx € A" can be computed as

n

f(x) = Z :3,<w (x”’) .w(x)> + 6o .

)=1

It can be shown that the sum is sparse: [J; = 0 for non-support
vectors.
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