Introduction to Machine Learning

Nonlinear Support Vector Machines and Reproducing Kernel Hilbert Space and Representer Theorem

Learning goals

- Know that for every kernel there is an associated feature map and space (Mercer's Theorem)
- Know that this feature map is not unique, and the reproducing kernel Hilbert space (RKHS) is a reference space
- Know the representation of the
- Know the representation of the solution of a SVM is given by the representer theorem

REPRODUCING KERNEL HILBERT SPACE

- There are many possible Hilbert spaces and feature maps for the same kernel, but they are all "equivalent" (isomorphic).
- It is often helpful to have a reference space for a kernel k(·, ·), called the reproducing kernel Hilbert space (RKHS).
- The feature map of this space is

$$\phi: \mathcal{X} \to \mathcal{C}(\mathcal{X}); \quad \mathbf{x} \mapsto k(\mathbf{x}, \cdot)$$

where $\mathcal{C}(\mathcal{X})$ is the space of continuous functions $\mathcal{X} \to \mathbb{R}$. The "features" of the RKHS are the kernel functions evaluated at an \mathbf{x} .

• The Hilbert space is the completion of the span of the features:

$$\Phi = \overline{\operatorname{span}\{\phi(\mathbf{x}) \,|\, \mathbf{x} \in \mathcal{X}\}} \subset \mathcal{C}(\mathcal{X}) \ .$$

The so-called reproducing property states:

$$\langle k(\mathbf{x},\cdot), k(\tilde{\mathbf{x}},\cdot) \rangle = \langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle = k(\mathbf{x}, \tilde{\mathbf{x}}).$$

REPRODUCING KERNEL HILBERT SPACE /2

- The RKHS provides us with a useful interpretation: an input x ∈ X mapped to the basis function φ(x) = k(x,·).
- The kernel maps 2 points and computes the inner product:

$$\langle k(\mathbf{x},\cdot), k(\tilde{\mathbf{x}},\cdot) \rangle = k(\mathbf{x},\tilde{\mathbf{x}})$$
.

This is best illustrated with the Gaussian kernel.

REPRODUCING KERNEL HILBERT SPACE /3

- Caveat: Not all elements of the Hilbert space are of the form k(x, ·) for some x ∈ X!
- A general element in the span takes the form

$$\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}^{(i)}, \cdot\right) \in \Phi .$$

$$\sum_{i=1}^{\infty} \alpha_i k\left(\mathbf{x}^{(i)}, \cdot\right) \in \Phi .$$

with
$$\sum_{i=1}^{\infty} \alpha_{ii}^2 < \infty$$
.

REPRODUCING KERNEL HILBERT SPACE /4

What is $\langle f, g \rangle$ for two elements

$$f = \sum_{i=1}^{n} \alpha_i k\left(\mathbf{x}^{(i)}, \cdot\right), \qquad g = \sum_{j=1}^{m} \beta_j k\left(\mathbf{x}^{(j)}, \cdot\right) ?$$

We use the bilinearity of the inner product:

$$\left\langle \sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}^{(i)}, \cdot\right), \sum_{j=1}^{m} \beta_{j} k\left(\mathbf{x}^{(j)}, \cdot\right) \right\rangle = \sum_{i=1}^{n} \alpha_{i} \left\langle k\left(\mathbf{x}^{(i)}, \cdot\right), \sum_{j=1}^{m} \beta_{j} k\left(\mathbf{x}^{(j)}, \cdot\right) \right\rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} \left\langle k\left(\mathbf{x}^{(i)}, \cdot\right), k\left(\mathbf{x}^{(j)}, \cdot\right) \right\rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$$

The kernel defines the inner products of all elements in the span of the basis functions.

REPRESENTER THEOREM /2

- Hence, we can restrict the SVM optimization problem to the finite-dimensional subspace span {φ(x⁽¹⁾),...,φ(x⁽ⁿ⁾)}.
 Its dimension grows with the size of the training set.
- More explicitly, we can assume the form

$$\boldsymbol{\theta} = \sum_{j=1}^{n} \beta_{j} \cdot \phi \left(\mathbf{x}^{(j)} \right)$$

for the weight vector $\theta \in \Phi$.

• The SVM prediction on $\mathbf{x} \in \mathcal{X}$ can be computed as

$$f(\mathbf{x}) = \sum_{j=1}^{n} \beta_{j} \left\langle \phi\left(\mathbf{x}^{(j)}\right), \phi\left(\mathbf{x}\right) \right\rangle + \theta_{0}$$
.

It can be shown that the sum is **sparse**: $\beta_j \equiv 0$ for non-support vectors.

