Introduction to Machine Learning

] Nonlinear-Support Vector Machines
I The Kernel Trick

Learning goals
@ 'Know how to efficiently introduce
non:linearity-via the kernel trick
@ "Know common kernel functions
(linear, polynomial, radial)

@ Know how to compute predictions of
the kernel SVM



DUAL SVM PROBLEM WITH FEATURE MAP
The dual (soft-margin) SVM is:
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Here we replaced all features x') with feature-generated, transformed
versions ¢(x()).

We see: The optimization problem only depends on pair-wise inner
products of the inputs.

This now allows a trick to enable efficient solving.
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MERCER KERNEL

Definition: A (Mercer) kernel on a space A’ is a continuous function
k: X xX =R

of twaarguments:with the:properties
@ Symmetry: k(x.X) = k(X,x) forall x,x € X.
e Positive definiteness: For each finite subset {x(), ... x("} the
kernel Gram matrix K < R"*" with entries K = k(x'),x\/)) is
positive semi-definite.
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RBF KERNEL

The “radial" Gaussian kernel is defined as
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KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner O 0O X
products (¢ (x(7) ¢ (xU)) ) by kernels k(x("), x(1))
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This problem is still convex because K is psd!
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KERNEL SVM: PREDICTIONS
For the linear soft-margin SVM we had:
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After the featuremap this becomes:

n
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Assuming that the:dot: product still follows:its:bilinearrules:in the
mapped space and using the kernel trick again:
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MNIST EXAMPLE

@ Through this kernelization we can now conveniently perform O O X
feature generation even for higher-dimensional data. Actually, this
is how we computed all previous examples, too. X O

@ We again consider MNIST with 28 » 28 bitmaps of gray values.

@ Apolynamial kernel extracts (d : ") — 1 features and for the X X
RBF kernel the dimensionality would be irfinite.

and use the rest of the data for testing; and use 6=1.
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I @ We train 8YMs again on 700 abservations of the MNIST data set
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